A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

Overview

Pneumonia Classification

This is a simple REST api that is served to classify pneumonia given an X-ray image of a chest of a human being. The following are expected results when the model does it's classification.

  1. pneumonia bacteria
  2. pneumonia virus
  3. normal

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model

We are using a simple Multi Layer Perceptron (MLP) achitecture to do the categorical image classification on chest-x-ray images which looks simply as follows:

class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dropout=.5):
        super(MLP, self).__init__()
        self.input_fc = nn.Linear(input_dim, 250)
        self.hidden_fc = nn.Linear(250, 100)
        self.output_fc = nn.Linear(100, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size = x.shape[0]
        x = x.view(batch_size, -1)
        x = F.relu(self.input_fc(x))
        x = self.dropout(x)
        x = F.relu(self.hidden_fc(x))
        x = self.dropout(x)
        outputs = self.output_fc(x)
        return outputs, x

All images are transformed to grayscale.

Model Metrics

The following table shows all the metrics summary we get after training the model for few 10 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
chest-x-ray.pt pneumonia classification using Multi Layer Perceprton (MLP) 73.73% 73.73% 72.47% 0.621 0.621 0.639

Classification report

This classification report is based on the first batch of the test dataset i used which consist of 64 images in a batch.

# precision recall f1-score support
micro avg 100% 81% 90% 4096
macro avg 100% 81% 90% 4096
weighted avg 100% 81% 90% 4096

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 64 images in a batch:

Pneumonia classification

If you hit the server at http://localhost:3001/api/pneumonia you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/pneumonia with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Using curl

Make sure that you have the image named normal.jpeg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/pneumonia with the file normal.jpeg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/pneumonia

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class_label": "NORMAL",
    "label": 0,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.8500000238418579
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.07000000029802322
      },
      {
        "class_label": "PNEUMONIA VIRAL",
        "label": 2,
        "probability": 0.07999999821186066
      }
    ],
    "probability": 0.8500000238418579
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://127.0.0.1:3001/api/pneumonia", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class_label": "PNEUMONIA VIRAL",
    "label": 2,
    "meta": {
      "description": "given a medical chest-x-ray image of a human being we are going to classify weather a person have pneumonia virus, pneumonia bacteria or none of those(normal).",
      "language": "python",
      "library": "pytorch",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class_label": "NORMAL",
        "label": 0,
        "probability": 0.15000000596046448
      },
      {
        "class_label": "PNEUMONIA BACTERIA",
        "label": 1,
        "probability": 0.10000000149011612
      },
      { "class_label": "PNEUMONIA VIRAL", "label": 2, "probability": 0.75 }
    ],
    "probability": 0.75
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .pt file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022