A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

Overview

TecoGAN-PyTorch

Introduction

This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to the official TensorFlow implementation TecoGAN-TensorFlow for more information.

Features

  • Better Performance: This repo provides model with smaller size yet better performance than the official repo. See our Benchmark on Vid4 and ToS3 datasets.
  • Multiple Degradations: This repo supports two types of degradation, i.e., BI & BD. Please refer to this wiki for more details about degradation types.
  • Unified Framework: This repo provides a unified framework for distortion-based and perception-based VSR methods.

Contents

  1. Dependencies
  2. Test
  3. Training
  4. Benchmark
  5. License & Citation
  6. Acknowledgements

Dependencies

  • Ubuntu >= 16.04
  • NVIDIA GPU + CUDA
  • Python 3
  • PyTorch >= 1.0.0
  • Python packages: numpy, matplotlib, opencv-python, pyyaml, lmdb
  • (Optional) Matlab >= R2016b

Test

Note: We apply different models according to the degradation type of the data. The following steps are for 4x upsampling in BD degradation. You can switch to BI degradation by replacing all BD to BI below.

  1. Download the official Vid4 and ToS3 datasets.
bash ./scripts/download/download_datasets.sh BD 

If the above command doesn't work, you can manually download these datasets from Google Drive, and then unzip them under ./data.

The dataset structure is shown as below.

data
  ├─ Vid4
    ├─ GT                # Ground-Truth (GT) video sequences
      └─ calendar
        ├─ 0001.png
        └─ ...
    ├─ Gaussian4xLR      # Low Resolution (LR) video sequences in BD degradation
      └─ calendar
        ├─ 0001.png
        └─ ...
    └─ Bicubic4xLR       # Low Resolution (LR) video sequences in BI degradation
      └─ calendar
        ├─ 0001.png
        └─ ...
  └─ ToS3
    ├─ GT
    ├─ Gaussian4xLR
    └─ Bicubic4xLR
  1. Download our pre-trained TecoGAN model. Note that this model is trained with lesser training data compared with the official one, since we can only retrieve 212 out of 308 videos from the official training dataset.
bash ./scripts/download/download_models.sh BD TecoGAN

Again, you can download the model from [BD degradation] or [BI degradation], and put it under ./pretrained_models.

  1. Super-resolute the LR videos with TecoGAN. The results will be saved at ./results.
bash ./test.sh BD TecoGAN
  1. Evaluate SR results using the official metrics. These codes are borrowed from TecoGAN-TensorFlow, with minor modifications to adapt to BI mode.
python ./codes/official_metrics/evaluate.py --model TecoGAN_BD_iter500000
  1. Check out model statistics (FLOPs, parameters and running speed). You can modify the last argument to specify the video size.
bash ./profile.sh BD TecoGAN 3x134x320

Training

  1. Download the official training dataset based on the instructions in TecoGAN-TensorFlow, rename to VimeoTecoGAN and then place under ./data.

  2. Generate LMDB for GT data to accelerate IO. The LR counterpart will then be generated on the fly during training.

python ./scripts/create_lmdb.py --dataset VimeoTecoGAN --data_type GT

The following shows the dataset structure after completing the above two steps.

data
  ├─ VimeoTecoGAN          # Original (raw) dataset
    ├─ scene_2000
      ├─ col_high_0000.png
      ├─ col_high_0001.png
      └─ ...
    ├─ scene_2001
      ├─ col_high_0000.png
      ├─ col_high_0001.png
      └─ ...
    └─ ...
  └─ VimeoTecoGAN.lmdb     # LMDB dataset
    ├─ data.mdb
    ├─ lock.mdb
    └─ meta_info.pkl       # each key has format: [vid]_[total_frame]x[h]x[w]_[i-th_frame]
  1. (Optional, this step is needed only for BI degradation) Manually generate the LR sequences with Matlab's imresize function, and then create LMDB for them.
# Generate the raw LR video sequences. Results will be saved at ./data/Bicubic4xLR
matlab -nodesktop -nosplash -r "cd ./scripts; generate_lr_BI"

# Create LMDB for the raw LR video sequences
python ./scripts/create_lmdb.py --dataset VimeoTecoGAN --data_type Bicubic4xLR
  1. Train a FRVSR model first. FRVSR has the same generator as TecoGAN, but without GAN training. When the training is finished, copy and rename the last checkpoint weight from ./experiments_BD/FRVSR/001/train/ckpt/G_iter400000.pth to ./pretrained_models/FRVSR_BD_iter400000.pth. This step offers a better initialization for the TecoGAN training.
bash ./train.sh BD FRVSR

You can download and use our pre-trained FRVSR model [BD degradation] [BI degradation] without training from scratch.

bash ./scripts/download/download_models.sh BD FRVSR
  1. Train a TecoGAN model. By default, the training is conducted in the background and the output info will be logged at ./experiments_BD/TecoGAN/001/train/train.log.
bash ./train.sh BD TecoGAN
  1. To monitor the training process and visualize the validation performance, run the following script.
 python ./scripts/monitor_training.py --degradation BD --model TecoGAN --dataset Vid4

Note that the validation results are NOT the same as the test results mentioned above, because we use a different implementation of the metrics. The differences are caused by croping policy, LPIPS version and some other issues.

Benchmark

[1] FLOPs & speed are computed on RGB sequence with resolution 134*320 on NVIDIA GeForce GTX 1080Ti GPU.
[2] Both FRVSR & TecoGAN use 10 residual blocks, while TecoGAN+ has 16 residual blocks.

License & Citation

If you use this code for your research, please cite the following paper.

@article{tecogan2020,
  title={Learning temporal coherence via self-supervision for GAN-based video generation},
  author={Chu, Mengyu and Xie, You and Mayer, Jonas and Leal-Taix{\'e}, Laura and Thuerey, Nils},
  journal={ACM Transactions on Graphics (TOG)},
  volume={39},
  number={4},
  pages={75--1},
  year={2020},
  publisher={ACM New York, NY, USA}
}

Acknowledgements

This code is built on TecoGAN-TensorFlow, BasicSR and LPIPS. We thank the authors for sharing their codes.

If you have any questions, feel free to email [email protected]

Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022