Implementation of U-Net and SegNet for building segmentation

Overview

Specialized project

Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Technology (NTNU).

Models

Most of our code and the U-net model is significantly inspired by this project Unet-for-Person-Segmentation. The SegNet model we created on our own based on other implementations of SegNet in Tensorflow.

Data

The model is trained and tested on Massachusetts Buildings Dataset from Kaggle. The original images where 1500X1500 pixels each over an area of 1500x1500 meters (1mx1m resolution). The original 137 images were cropped into 64x64 pixels and images without building were filtered out.

To make the masks compatible with our model the masks was changed from white (255,255,255) labels to greyscale with value 1. This is done in image_fix.py found in the repo.

Folder structure

Images and masks are saved in local directories and used in data.py and test.py. This is of course possible to change, however if you want to use the exact same code you can follow this folder structure.


.
├── ...
├── building-segmentation                # Directory for all images
│   ├── Images                           # Directory for raw images
│   │   ├── cropped_images_train_64      # Directory for cropped images where number specifies resolution, containg .jpg
│   │   ├── cropped_images_train_128     # Directory for cropped images where number specifies resolution, containg .jpg 
│   │   └── ...                          # More directories with other resolutions
│   ├── Masks                            # Directory for all maskes
│   │   ├── cropped_masks_train_64       # Directory for cropped masks where number specifies resolution, containg .jpg
│   │   ├── cropped_masks_train_128      # Directory for cropped masks where number specifies resolution, containg .jpg 
│   │   └── ...                          # More directories with other resolutions
│   └── Test                             # Miscellaneous information
│       ├── test_64                      # Directory for images where number specifies resolution, containing .jpg
│       └── ...                          # More directories with other resolutions
└── ...
# data.py
    images = glob(os.path.join(dataset_path, "images/cropped_images_train_64/*"))
    masks = glob(os.path.join(dataset_path, "masks/cropped_masks_train_64/*"))
    
    # In main:
        dataset_path = "building-segmentation"
    
# test.py
    test_images = glob("building-segmentation/test/test_64/*")

Running the project

Requirements

Training

Testing

Owner
Martin.w-e
ICT & Engineering student at NTNU, Specialization in Geomatics and Computer Science
Martin.w-e
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022