Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Related tags

Deep LearningPGCN
Overview

Graph Convolutional Networks for Temporal Action Localization

This repo holds the codes and models for the PGCN framework presented on ICCV 2019

Graph Convolutional Networks for Temporal Action Localization Runhao Zeng*, Wenbing Huang*, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan, ICCV 2019, Seoul, Korea.

[Paper]

Updates

20/12/2019 We have uploaded the RGB features, trained models and evaluation results! We found that increasing the number of proposals to 800 in the testing further boosts the performance on THUMOS14. We have also updated the proposal list.

04/07/2020 We have uploaded the I3D features on Anet, the training configurations files in data/dataset_cfg.yaml and the proposal lists for Anet.

Contents



Usage Guide

Prerequisites

[back to top]

The training and testing in PGCN is reimplemented in PyTorch for the ease of use.

Other minor Python modules can be installed by running

pip install -r requirements.txt

Code and Data Preparation

[back to top]

Get the code

Clone this repo with git, please remember to use --recursive

git clone --recursive https://github.com/Alvin-Zeng/PGCN

Download Datasets

We support experimenting with two publicly available datasets for temporal action detection: THUMOS14 & ActivityNet v1.3. Here are some steps to download these two datasets.

  • THUMOS14: We need the validation videos for training and testing videos for testing. You can download them from the THUMOS14 challenge website.
  • ActivityNet v1.3: this dataset is provided in the form of YouTube URL list. You can use the official ActivityNet downloader to download videos from the YouTube.

Download Features

Here, we provide the I3D features (RGB+Flow) for training and testing.

THUMOS14: You can download it from Google Cloud or Baidu Cloud.

Anet: You can download the I3D Flow features from Baidu Cloud (password: jbsa) and the I3D RGB features from Google Cloud (Note: set the interval to 16 in ops/I3D_Pooling_Anet.py when training with RGB features)

Download Proposal Lists (ActivityNet)

Here, we provide the proposal lists for ActivityNet 1.3. You can download them from Google Cloud

Training PGCN

[back to top]

Plesse first set the path of features in data/dataset_cfg.yaml

train_ft_path: $PATH_OF_TRAINING_FEATURES
test_ft_path: $PATH_OF_TESTING_FEATURES

Then, you can use the following commands to train PGCN

python pgcn_train.py thumos14 --snapshot_pre $PATH_TO_SAVE_MODEL

After training, there will be a checkpoint file whose name contains the information about dataset and the number of epoch. This checkpoint file contains the trained model weights and can be used for testing.

Testing Trained Models

[back to top]

You can obtain the detection scores by running

sh test.sh TRAINING_CHECKPOINT

Here, TRAINING_CHECKPOINT denotes for the trained model. This script will report the detection performance in terms of mean average precision at different IoU thresholds.

The trained models and evaluation results are put in the "results" folder.

You can obtain the two-stream results on THUMOS14 by running

sh test_two_stream.sh

THUMOS14

[email protected] (%) RGB Flow RGB+Flow
P-GCN (I3D) 37.23 47.42 49.07 (49.64)

#####Here, 49.64% is obtained by setting the combination weights to Flow:RGB=1.2:1 and nms threshold to 0.32

Other Info

[back to top]

Citation

Please cite the following paper if you feel PGCN useful to your research

@inproceedings{PGCN2019ICCV,
  author    = {Runhao Zeng and
               Wenbing Huang and
               Mingkui Tan and
               Yu Rong and
               Peilin Zhao and
               Junzhou Huang and
               Chuang Gan},
  title     = {Graph Convolutional Networks for Temporal Action Localization},
  booktitle   = {ICCV},
  year      = {2019},
}

Contact

For any question, please file an issue or contact

Runhao Zeng: [email protected]
Owner
Runhao Zeng
Runhao Zeng
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022