Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Overview

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video]

The implementation of the papers

Install

The framework was tested with Python 3.8, PyTorch 1.7.0. and CUDA 11.0. The easiest way to work with the code is to create a new virtual Python environment and install the required packages.

  1. Install the virtualenvwrapper.
  2. Create a new environment and install the required packages.
mkvirtualenv --python=python3.8 tcsr
pip install -r requirements.txt
  1. Install Pytorch3d.
cd ~
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install git+https://github.com/facebookresearch/[email protected]
  1. Get the code and prepare the environment as follows:
git clone [email protected]:bednarikjan/temporally_coherent_surface_reconstruction.git
git submodule update --init --recursive
export PYTHONPATH="{PYTHONPATH}:path/to/dir/temporally_coherent_surface_reconstruction"

Get the Data

The project was tested on 6 base datasets (and their derivatives). Each datasets has to be processed so as to generate the input point clouds for training, the GT correspondences for evauluation and other auxilliary data. To do so, please use the individual scripts in tcsr/process_datasets. For each dataset, follow these steps:

  1. Download the data (links below).
  2. Open the script <dataset_name>.py and set the input/output paths.
  3. Run the script: python <dataset_name>.py

1. ANIM

  • Download the sequences horse gallop, horse collapse, camel gallop, camel collapse, and elephant gallop.
  • Download the sequence walking cat.

2. AMA

  • Download all 10 sequences, meshes only.

3. DFAUST

4. CAPE

  • Request the access to the raw scans and download it.
  • At the time of writing the paper (September 2021) four subjects (00032, 00096, 00159, 03223) were available and used in the paper.

5. INRIA

  • Request the access to the dataset and download it.
  • At the time of writing the paper (September 2021), four subjects (s1, s2, s3, s6) were available and used in the paper.

6. CMU

Train

The provided code allows for training our proposed method (OUR) but also the other atlas based approaches Differential Surface Representation (DSR) and AtlasNet (AN). The training is configured using the *.yaml configuration scripts in tcsr/train/configs.

There are 9 sample configuration files our_<dataset_name>.yaml which train OUR on each individual dataset and 2 sample configuration files an_anim.yaml, dsr_anim.yaml which train AN and DSR respectivelly on ANIM dataset.

By default, the trainin uses the exact settings as in the paper, namely it trains for 200'000 iterations using SGD, learning rate of 0.001 and batch size of 4. This can be altered in the configuration files.

Before starting the training, follow these steps:

  • Open the source file tcsr/data/data_loader.py and set the paths to the datasets in each dataset class.
  • Open the desired training configuration *.yaml file in tcsr/train/configs/ and set the output path for the training run data in the attribute path_train_run.

Start the training usint the script tcsr/train/train.py:

python train.py --conf configs/<file_name>.yaml

By default the script saves the training progress each 2000 iterations so you can safely kill it at any point and resume the trianing later using:

python train.py --cont path/to/training_run/root_dir

Evaluate

To evaluate a trianed model on the dense correspondence prediction task, use the script tcsr/evaluate/eval_dataset.py which allows for evaluation of multiple sequences (i.e. individual training runs within one dataset) at once. Please have a look at the command line arguments in the file.

An example of how to run the evaluation for the training runs contained in the root directory train_runs_root corresponding to 2 training runs run for the sequences cat_walk and horse_gallop within ANIM dataset:

python eval_dataset.py /path/to/train_runs_root --ds anim --include_seqs cat_walk horse_gallop  

The script produces a *.csv file in train_runs_root with the 4 measured metrics (see the paper).

Visualize

There are currently two ways to visualize the predictions.

1. Tensorboard

By default, the training script saves the GT and the predicted point clouds (for a couple of random data samples) each 2000 iterations. These can be viewed within Tensorboard. Each patch is visualized with a different color. This visualization is mostly useful as a sanity check during the trianing to see that the model is converging as expected.

  • Navigate to the root directory of the trianing runs and run:
tensorboard --logdir=. --port=8008 --bind_all
  • Open your browser and navigate to http://localhost:8008/

2. Per-sequence reconstruction GIF

You can view the reconstructed surfaces as a patch-wise textured mesh as a video within a GIF file. For this purpose, use the IPython Notebook file tcsr/visualize/render_uv.ipynb and open it in jupyterlab which allows for viewing the GIF right after running the code.

The rendering parameters (such as the camera location, texturing mode, gif speed etc.) are set usin the configuration file tcsr/visualize/conf_patches.yaml. There are sample configurations for the sequence cat_walk, which can be used to write configurations for other sequences/datasets.

Before running the cells, set the variables in the second cell (paths, models, data).

Citation

@inproceedings{bednarik2021temporally_coherent,
   title = {Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases},
   author = {Bednarik, Jan and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal and Aigerman, Noam},
   booktitle = {Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year = {2021}
}

@inproceedings{bednarik2021temporally_consistent,
   title = {Temporally-Consistent Surface Reconstruction via Metrically-Consistent Atlases},
   author = {Bednarik, Jan and Aigerman, Noam and Kim, Vladimir G. and Chaudhuri, Siddhartha and Parashar, Shaifali and Salzmann, Mathieu and Fua, Pascal},
   booktitle = {arXiv},
   year = {2021}
}

Acknowledgements

This work was partially done while the main author was an intern at Adobe Research.

TODO

  • Add support for visualizing the correspondence error heatmap on the GT mesh.
  • Add support for visualizing the colorcoded correspondences on the GT mesh.
  • Add the support for generating the pre-aligned AMAa dataset using ICP.
  • Add the code for the nonrigid ICP experiments.
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022