[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Overview

PWC PWC

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021)

[arXiv][Project page >> coming soon]

Sanath Narayan*, Akshita Gupta*, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Mubarak Shah

( 🌟 denotes equal contribution)

Installation

The codebase is built on PyTorch 1.1.0 and tested on Ubuntu 16.04 environment (Python3.6, CUDA9.0, cuDNN7.5).

For installing, follow these intructions

conda create -n mlzsl python=3.6
conda activate mlzsl
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image scikit-learn opencv-python yacs joblib natsort h5py tqdm pandas

Install warmup scheduler

cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

Attention Visualization

Results

Our approach on NUS-WIDE Dataset.

Our approach on OpenImages Dataset.

Training and Evaluation

NUS-WIDE

Step 1: Data preparation

  1. Download pre-computed features from here and store them at features folder inside BiAM/datasets/NUS-WIDE directory.
  2. [Optional] You can extract the features on your own by using the original NUS-WIDE dataset from here and run the below script:
python feature_extraction/extract_nus_wide.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full NUS-WIDE dataset, please run:

sh scripts/train_nus.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on NUS-WIDE. You can download the pretrained weights from here and store them at NUS-WIDE folder inside pretrained_weights directory.

sh scripts/evaluate_nus.sh

OPEN-IMAGES

Step 1: Data preparation

  1. Please download the annotations for training, validation, and testing into this folder.

  2. Store the annotations inside BiAM/datasets/OpenImages.

  3. To extract the features for OpenImages-v4 dataset run the below scripts for crawling the images and extracting features of them:

## Crawl the images from web
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `train`: download images into `./image_data/train/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `validation`: download images into `./image_data/validation/`
python ./datasets/OpenImages/download_imgs.py  #`data_set` == `test`: download images into `./image_data/test/`

## Run feature extraction codes for all the 3 splits
python feature_extraction/extract_openimages_train.py
python feature_extraction/extract_openimages_test.py
python feature_extraction/extract_openimages_val.py

Step 2: Training from scratch

To train and evaluate multi-label zero-shot learning model on full OpenImages-v4 dataset, please run:

sh scripts/train_openimages.sh
sh scripts/evaluate_openimages.sh

Step 3: Evaluation using pretrained weights

To evaluate the multi-label zero-shot model on OpenImages. You can download the pretrained weights from here and store them at OPENIMAGES folder inside pretrained_weights directory.

sh scripts/evaluate_openimages.sh

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citation

If you find this repository useful, please consider giving a star and citation 🎊 :

@article{narayan2021discriminative,
title={Discriminative Region-based Multi-Label Zero-Shot Learning},
author={Narayan, Sanath and Gupta, Akshita and Khan, Salman and  Khan, Fahad Shahbaz and Shao, Ling and Shah, Mubarak},
journal={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher = {IEEE},
year={2021}
}

Contact

Should you have any question, please contact 📧 [email protected]

Owner
Akshita Gupta
Sem @IITR | Outreachy @mozilla | Research Engineer @IIAI
Akshita Gupta
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022