PCGNN - Procedural Content Generation with NEAT and Novelty

Related tags

Deep LearningPCGNN
Overview

PCGNN - Procedural Content Generation with NEAT and Novelty

Generation ApproachMetricsPaperPosterExamples

About

This is a research project for a BSc (Hons) degree at the University of the Witwatersrand, Johannesburg. It's about combining novelty search and NeuroEvolution of Augmenting Topologies (NEAT) for procedural level generation. We also investigate two new metrics for evaluating the diversity and difficulty of levels. This repo contains our code as well as the final report.

If you just want to get started generating or playing levels, then please look at how to generate levels or the examples. Also feel free to look at the report or a poster that summarises our approach. For information about the metrics and how to use them, see here.

General structure

The main structure of the code is (hopefully) somewhat understandable. First of all, to run any python file in here, use ./run.sh path/to/python/file instead of using python directly, because otherwise modules are not recognised.

Most code in here can be categorised into 3 main archetypes:

  1. General / Method code. This is how the methods were actually implemented, and these files don't do anything useful when run on their own.
  2. Runs / Experiment code. This is a large chunk of what is in here, specifically it is code that runs the methods in some way, and generates results. Most of the results that we generate are in python pickle format.
  3. Analysis Code. We have a pretty clear separation between experiment code (which runs the methods), and analysis code, which takes in the results and generates some usable output, like images, tables, graphs, etc.

File Structure

Most of these are relative to ./src

Method Code
├── novelty_neat     -> Our actual method
├── main
├── baselines
├── games
├── common
├── metrics

Instrumental
├── experiments
├── pipelines
├── runs
├── run.sh
├── scripts
└── slurms

Analysis
├── analysis
├── external

Data
├── levels
├── logs
├── results
├── ../results

Document
├── ../doc/report.pdf

Explanation

The method roughly works as follows:

  1. Evolve a neural network using NEAT (with neat-python)
  2. The fitness function for each neural network is as follows:
    1. Generate N levels per network
    2. Calculate the average solvability of these N levels
    3. Calculate how different these N levels are from each other (called intra-novelty). Calculate the average of this.
    4. Calculate how different these N levels are from the other networks' levels (normal novelty)
    5. Fitness (network) = w1 * Solvability + w2 * Intra-Novelty + w3 * Novelty.
  3. Update the networks using the above calculated fitness & repeat for X generations.

After this 'training' process, take the best network and use it to generate levels in real time.

The way novelty is calculated can be found in the report, or from the original paper by Joel Lehman and Kenneth O. Stanley, here.

We compare levels by considering a few different distance functions, like the normalised Hamming Distance and Image Hashing, but others can also be used.

Get started

To get started you would require a python environment, and env.yml is provided to quickly get started with Conda. Use it like: conda create -f env.yml. There is also another environment that is used specifically for interacting with the gym_pcgrl codebase. If that is something you want to do, then create another environment from the env_pcgrl.yml file.

For full functionality, you will also need java installed. The openjdk 16.0.1 2021-04-20 version worked well.

Additionally, most of the actual experiments used Weights & Biases to log experiments and results, so you would also need to log in using your credentials. The simple entry points described below should not require it.

Entry Points

At the moment, the easiest way to interact with the codebase would be to use the code in src/main/.

Generate Levels.

To have a go at generating levels, then you can use the functions provided in src/main/main.py. Specifically you can call this (remember to be in the src directory before running these commands):

./run.sh main/main.py --method noveltyneat --game mario --mode generate --width 114 --height 14

The above allows you to view some generated levels.

Playing Levels

You can also play the (Mario) levels, or let an agent play them. After generating a level using the above, you can play it by using:

./run.sh main/main.py --game mario --command play-human --filename test_level.txt

Or you can let an A* agent play it using

./run.sh main/main.py --game mario --command play-agent --filename test_level.txt

Features

Works for Tilemaps

Mario Mario

Generates arbitrary sized levels without retraining

Mario

Mario-28 Mario-56 Mario-114 Mario-228

Maze



Experiments

We have many different experiments, with the following meaning:

Generalisation - Generate Larger levels

  • v206: Mario
  • v104: Maze NEAT
  • v107: Maze DirectGA

Metrics

  • v202: Mario
  • v106: Maze

Method runs

  • v105: Maze NEAT
  • v102: Maze DirectGA
  • v204: Mario NEAT
  • v201: Mario DirectGA

The PCGRL code can be found in ./src/external/gym-pcgrl

Reproducing

Our results that were shown and mentioned in the report are mainly found in src/results/.

The following describes how to reproduce our results. Note, there might be some difference in the ordering of the images (e.g. mario-level-0.png and mario-level-1.png will swap), but the set of level images generated should be exactly the same.

The whole process contains 3 steps, and does assume a Slurm based cluster scheduler. Please also change the logfile locations (look at running src/pipelines/replace_all_paths.sh from the repository root after changing paths in there - this updates all paths, and decompresses some results). Our partition name was batch, so this also potentially needs to be updated in the Slurm scripts.

You need to run the following three scripts, in order, and before you start the next one, all the jobs from the previous one must have finished.

Note, timing results probably will differ, and for fairness, we recommend using a machine with at least 8 cores, as we do usually run multiple seeds in parallel. Do not continue on to the next step before all runs in the current one have finished. First of all, cd src/pipelines

  1. ./reproduce_full.sh -> Runs the DirectGA & NoveltyNEAT experiments.
  2. ./analyse_all.sh -> Reruns the metric calculations on the above, and saves it to a easy to work with format
  3. ./finalise_analysis.sh -> Uses the above results to create figures and tables.

The analysis runs (steps 2 and 3.) should automatically use the latest results. If you want to change this, then before going from one step to the next, you will need to manually update the location of the .p files, e.g. between step 1. and 2., you need to update

  • src/analysis/proper_experiments/v200/for_mario_generation_1.py,
  • src/analysis/proper_experiments/v100/for_maze_1.py,
  • src/analysis/proper_experiments/v100/analyse_104.py
  • src/analysis/proper_experiments/v200/analyse_206.py.

Likewise, between step 2. and 3., you need to update (only if you don't want to analyse the latest runs.)

  • src/analysis/proper_experiments/v400/analyse_all_statistical_tests.py and
  • src/analysis/proper_experiments/v400/analyse_all_metrics_properly.py.

For PCGRL, the runs do take quite long, so it is suggested to use our models / results. If you really want to rerun the training, you can look at the Slurm scripts in src/slurms/all_pcgrl/*.batch.

For the PCGRL inference, there are two steps to do, specifically:

  1. Run infer_pcgrl.py
  2. Then run the analysis scripts again, specifically analyse_all.sh and finalise_analysis.sh (noting to change the PCGRL filepaths in for_mario_generation_1.py and for_maze_1.py)

Note: The models for turtle (both Mario and Maze) were too large for Github and are thus not included here, but wide is.

Metrics

We also introduce 2 metrics to measure the diversity and difficulty of levels using A* agents. The code for these metrics are in metrics/a_star/a_star_metrics.py.

A* Diversity Metric

The A* diversity metric uses the trajectory of the agent on two levels to evaluate the diversity. Levels that are solved using different paths are marked as diverse, whereas levels with similar paths are marked as similar.

Largely Similar levels

Diversity = 0.08

Left         Right

Different Levels

Diversity = 0.27

Left         Right

All paths

The green and orange paths are quite similar, leading to low diversity

A* Difficulty

This metric measures how much of the search tree of an A* agent needs to be expanded before the agent can solve the level - more expansion indicates more exploration is required and that the level is more difficult.

Left         Right

Applying the metrics code to levels is done in (among others) src/runs/proper_experiments/v300_metrics.

We also experimented with using RL agents to measure the above characteristics, and results looked promising, but the implementation posed some challenges.

Feel free to look in

  • metrics/rl/tabular/rl_agent_metric.py
  • metrics/rl/tabular/tabular_rl_agent.py
  • metrics/rl/tabular/rl_difficulty_metric.py

for this code.

Assorted

Island Models

There is also some code (not thoroughly tested) that uses multiple island populations and performs regular migration between them and these can be found in novelty_neat/mario/test/island_mario.py, novelty_neat/maze/test/island_model.py and src/runs/proper_experiments/v200_mario/v203_island_neat.py.

Other repositories and projects used

These can be found in src/external. We did edit and adapt some of the code, but most of it is still original.

Some ideas from here

And some snippets from Stack Overflow, which I've tried to reference where they were used.

Acknowledgements

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant UID 133358).

Owner
Michael Beukman
Michael Beukman
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022