PCGNN - Procedural Content Generation with NEAT and Novelty

Related tags

Deep LearningPCGNN
Overview

PCGNN - Procedural Content Generation with NEAT and Novelty

Generation ApproachMetricsPaperPosterExamples

About

This is a research project for a BSc (Hons) degree at the University of the Witwatersrand, Johannesburg. It's about combining novelty search and NeuroEvolution of Augmenting Topologies (NEAT) for procedural level generation. We also investigate two new metrics for evaluating the diversity and difficulty of levels. This repo contains our code as well as the final report.

If you just want to get started generating or playing levels, then please look at how to generate levels or the examples. Also feel free to look at the report or a poster that summarises our approach. For information about the metrics and how to use them, see here.

General structure

The main structure of the code is (hopefully) somewhat understandable. First of all, to run any python file in here, use ./run.sh path/to/python/file instead of using python directly, because otherwise modules are not recognised.

Most code in here can be categorised into 3 main archetypes:

  1. General / Method code. This is how the methods were actually implemented, and these files don't do anything useful when run on their own.
  2. Runs / Experiment code. This is a large chunk of what is in here, specifically it is code that runs the methods in some way, and generates results. Most of the results that we generate are in python pickle format.
  3. Analysis Code. We have a pretty clear separation between experiment code (which runs the methods), and analysis code, which takes in the results and generates some usable output, like images, tables, graphs, etc.

File Structure

Most of these are relative to ./src

Method Code
├── novelty_neat     -> Our actual method
├── main
├── baselines
├── games
├── common
├── metrics

Instrumental
├── experiments
├── pipelines
├── runs
├── run.sh
├── scripts
└── slurms

Analysis
├── analysis
├── external

Data
├── levels
├── logs
├── results
├── ../results

Document
├── ../doc/report.pdf

Explanation

The method roughly works as follows:

  1. Evolve a neural network using NEAT (with neat-python)
  2. The fitness function for each neural network is as follows:
    1. Generate N levels per network
    2. Calculate the average solvability of these N levels
    3. Calculate how different these N levels are from each other (called intra-novelty). Calculate the average of this.
    4. Calculate how different these N levels are from the other networks' levels (normal novelty)
    5. Fitness (network) = w1 * Solvability + w2 * Intra-Novelty + w3 * Novelty.
  3. Update the networks using the above calculated fitness & repeat for X generations.

After this 'training' process, take the best network and use it to generate levels in real time.

The way novelty is calculated can be found in the report, or from the original paper by Joel Lehman and Kenneth O. Stanley, here.

We compare levels by considering a few different distance functions, like the normalised Hamming Distance and Image Hashing, but others can also be used.

Get started

To get started you would require a python environment, and env.yml is provided to quickly get started with Conda. Use it like: conda create -f env.yml. There is also another environment that is used specifically for interacting with the gym_pcgrl codebase. If that is something you want to do, then create another environment from the env_pcgrl.yml file.

For full functionality, you will also need java installed. The openjdk 16.0.1 2021-04-20 version worked well.

Additionally, most of the actual experiments used Weights & Biases to log experiments and results, so you would also need to log in using your credentials. The simple entry points described below should not require it.

Entry Points

At the moment, the easiest way to interact with the codebase would be to use the code in src/main/.

Generate Levels.

To have a go at generating levels, then you can use the functions provided in src/main/main.py. Specifically you can call this (remember to be in the src directory before running these commands):

./run.sh main/main.py --method noveltyneat --game mario --mode generate --width 114 --height 14

The above allows you to view some generated levels.

Playing Levels

You can also play the (Mario) levels, or let an agent play them. After generating a level using the above, you can play it by using:

./run.sh main/main.py --game mario --command play-human --filename test_level.txt

Or you can let an A* agent play it using

./run.sh main/main.py --game mario --command play-agent --filename test_level.txt

Features

Works for Tilemaps

Mario Mario

Generates arbitrary sized levels without retraining

Mario

Mario-28 Mario-56 Mario-114 Mario-228

Maze



Experiments

We have many different experiments, with the following meaning:

Generalisation - Generate Larger levels

  • v206: Mario
  • v104: Maze NEAT
  • v107: Maze DirectGA

Metrics

  • v202: Mario
  • v106: Maze

Method runs

  • v105: Maze NEAT
  • v102: Maze DirectGA
  • v204: Mario NEAT
  • v201: Mario DirectGA

The PCGRL code can be found in ./src/external/gym-pcgrl

Reproducing

Our results that were shown and mentioned in the report are mainly found in src/results/.

The following describes how to reproduce our results. Note, there might be some difference in the ordering of the images (e.g. mario-level-0.png and mario-level-1.png will swap), but the set of level images generated should be exactly the same.

The whole process contains 3 steps, and does assume a Slurm based cluster scheduler. Please also change the logfile locations (look at running src/pipelines/replace_all_paths.sh from the repository root after changing paths in there - this updates all paths, and decompresses some results). Our partition name was batch, so this also potentially needs to be updated in the Slurm scripts.

You need to run the following three scripts, in order, and before you start the next one, all the jobs from the previous one must have finished.

Note, timing results probably will differ, and for fairness, we recommend using a machine with at least 8 cores, as we do usually run multiple seeds in parallel. Do not continue on to the next step before all runs in the current one have finished. First of all, cd src/pipelines

  1. ./reproduce_full.sh -> Runs the DirectGA & NoveltyNEAT experiments.
  2. ./analyse_all.sh -> Reruns the metric calculations on the above, and saves it to a easy to work with format
  3. ./finalise_analysis.sh -> Uses the above results to create figures and tables.

The analysis runs (steps 2 and 3.) should automatically use the latest results. If you want to change this, then before going from one step to the next, you will need to manually update the location of the .p files, e.g. between step 1. and 2., you need to update

  • src/analysis/proper_experiments/v200/for_mario_generation_1.py,
  • src/analysis/proper_experiments/v100/for_maze_1.py,
  • src/analysis/proper_experiments/v100/analyse_104.py
  • src/analysis/proper_experiments/v200/analyse_206.py.

Likewise, between step 2. and 3., you need to update (only if you don't want to analyse the latest runs.)

  • src/analysis/proper_experiments/v400/analyse_all_statistical_tests.py and
  • src/analysis/proper_experiments/v400/analyse_all_metrics_properly.py.

For PCGRL, the runs do take quite long, so it is suggested to use our models / results. If you really want to rerun the training, you can look at the Slurm scripts in src/slurms/all_pcgrl/*.batch.

For the PCGRL inference, there are two steps to do, specifically:

  1. Run infer_pcgrl.py
  2. Then run the analysis scripts again, specifically analyse_all.sh and finalise_analysis.sh (noting to change the PCGRL filepaths in for_mario_generation_1.py and for_maze_1.py)

Note: The models for turtle (both Mario and Maze) were too large for Github and are thus not included here, but wide is.

Metrics

We also introduce 2 metrics to measure the diversity and difficulty of levels using A* agents. The code for these metrics are in metrics/a_star/a_star_metrics.py.

A* Diversity Metric

The A* diversity metric uses the trajectory of the agent on two levels to evaluate the diversity. Levels that are solved using different paths are marked as diverse, whereas levels with similar paths are marked as similar.

Largely Similar levels

Diversity = 0.08

Left         Right

Different Levels

Diversity = 0.27

Left         Right

All paths

The green and orange paths are quite similar, leading to low diversity

A* Difficulty

This metric measures how much of the search tree of an A* agent needs to be expanded before the agent can solve the level - more expansion indicates more exploration is required and that the level is more difficult.

Left         Right

Applying the metrics code to levels is done in (among others) src/runs/proper_experiments/v300_metrics.

We also experimented with using RL agents to measure the above characteristics, and results looked promising, but the implementation posed some challenges.

Feel free to look in

  • metrics/rl/tabular/rl_agent_metric.py
  • metrics/rl/tabular/tabular_rl_agent.py
  • metrics/rl/tabular/rl_difficulty_metric.py

for this code.

Assorted

Island Models

There is also some code (not thoroughly tested) that uses multiple island populations and performs regular migration between them and these can be found in novelty_neat/mario/test/island_mario.py, novelty_neat/maze/test/island_model.py and src/runs/proper_experiments/v200_mario/v203_island_neat.py.

Other repositories and projects used

These can be found in src/external. We did edit and adapt some of the code, but most of it is still original.

Some ideas from here

And some snippets from Stack Overflow, which I've tried to reference where they were used.

Acknowledgements

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant UID 133358).

Owner
Michael Beukman
Michael Beukman
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022