Semi-supervised learning for object detection

Overview

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection

STAC is a simple yet effective SSL framework for visual object detection along with a data augmentation strategy. STAC deploys highly confident pseudo labels of localized objects from an unlabeled image and updates the model by enforcing consistency via strong augmentation.

This code is only used for research. This is not an official Google product.

Instruction

Install dependencies

Set global enviroment variables.

export PRJROOT=/path/to/your/project/directory/STAC
export DATAROOT=/path/to/your/dataroot
export COCODIR=$DATAROOT/coco
export VOCDIR=$DATAROOT/voc
export PYTHONPATH=$PYTHONPATH:${PRJROOT}/third_party/FasterRCNN:${PRJROOT}/third_party/auto_augment:${PRJROOT}/third_party/tensorpack

Install virtual environment in the root folder of the project

cd ${PRJROOT}

sudo apt install python3-dev python3-virtualenv python3-tk imagemagick
virtualenv -p python3 --system-site-packages env3
. env3/bin/activate
pip install -r requirements.txt

# Make sure your tensorflow version is 1.14 not only in virtual environment but also in
# your machine, 1.15 can cause OOM issues.
python -c 'import tensorflow as tf; print(tf.__version__)'

# install coco apis
pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

(Optional) Install tensorpack

tensorpack with a compatible version is already included at third_party/tensorpack. bash cd ${PRJROOT}/third_party pip install --upgrade git+https://github.com/tensorpack/tensorpack.git

Download COCO/PASCAL VOC data and pre-trained models

Download data

See DATA.md

Download backbone model

cd ${COCODIR}
wget http://models.tensorpack.com/FasterRCNN/ImageNet-R50-AlignPadding.npz

Training

There are three steps:

  • 1. Train a standard detector on labeled data (detection/scripts/coco/train_stg1.sh).
  • 2. Predict pseudo boxes and labels of unlabeled data using the trained detector (detection/scripts/coco/eval_stg1.sh).
  • 3. Use labeled data and unlabeled data with pseudo labels to train a STAC detector (detection/scripts/coco/train_stg2.sh).

Besides instruction at here, detection/scripts/coco/train_stac.sh provides a combined script to train STAC.

detection/scripts/voc/train_stac.sh is a combined script to train STAC on PASCAL VOC.

The following example use labeled data as 10% train2017 and rest 90% train2017 data as unlabeled data.

Step 0: Set variables

cd ${PRJROOT}/detection

# Labeled and Unlabeled datasets
[email protected]
UNLABELED_DATASET=${DATASET}-unlabeled

# PATH to save trained models
CKPT_PATH=result/${DATASET}

# PATH to save pseudo labels for unlabeled data
PSEUDO_PATH=${CKPT_PATH}/PSEUDO_DATA

# Train with 8 GPUs
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

Step 1: Train FasterRCNN on labeled data

. scripts/coco/train_stg1.sh.

Set TRAIN.AUGTYPE_LAB=strong to apply strong data augmentation.

# --simple_path makes train_log/${DATASET}/${EXPNAME} as exact location to save
python3 train_stg1.py \
    --logdir ${CKPT_PATH} --simple_path --config \
    BACKBONE.WEIGHTS=${COCODIR}/ImageNet-R50-AlignPadding.npz \
    DATA.BASEDIR=${COCODIR} \
    DATA.TRAIN="('${DATASET}',)" \
    MODE_MASK=False \
    FRCNN.BATCH_PER_IM=64 \
    PREPROC.TRAIN_SHORT_EDGE_SIZE="[500,800]" \
    TRAIN.EVAL_PERIOD=20 \
    TRAIN.AUGTYPE_LAB='default'

Step 2: Generate pseudo labels of unlabeled data

. scripts/coco/eval_stg1.sh.

Evaluate using COCO metrics and save eval.json

# Check pseudo path
if [ ! -d ${PSEUDO_PATH} ]; then
    mkdir -p ${PSEUDO_PATH}
fi

# Evaluate the model for sanity check
# model-180000 is the last checkpoint
# save eval.json at $PSEUDO_PATH

python3 predict.py \
    --evaluate ${PSEUDO_PATH}/eval.json \
    --load "${CKPT_PATH}"/model-180000 \
    --config \
    DATA.BASEDIR=${COCODIR} \
    DATA.TRAIN="('${UNLABELED_DATASET}',)"

Generate pseudo labels for unlabeled data

Set EVAL.PSEUDO_INFERENCE=True to use original images rather than resized ones for inference.

# Extract pseudo label
python3 predict.py \
    --predict_unlabeled ${PSEUDO_PATH} \
    --load "${CKPT_PATH}"/model-180000 \
    --config \
    DATA.BASEDIR=${COCODIR} \
    DATA.TRAIN="('${UNLABELED_DATASET}',)" \
    EVAL.PSEUDO_INFERENCE=True

Step 3: Train STAC

. scripts/coco/train_stg2.sh.

The dataloader loads pseudo labels from ${PSEUDO_PATH}/pseudo_data.npy.

Apply default augmentation on labeled data and strong augmentation on unlabeled data.

TRAIN.CONFIDENCE and TRAIN.WU are two major parameters of the method.

python3 train_stg2.py \
    --logdir=${CKPT_PATH}/STAC --simple_path \
    --pseudo_path=${PSEUDO_PATH} \
    --config \
    BACKBONE.WEIGHTS=${COCODIR}/ImageNet-R50-AlignPadding.npz \
    DATA.BASEDIR=${COCODIR} \
    DATA.TRAIN="('${DATASET}',)" \
    DATA.UNLABEL="('${UNLABELED_DATASET}',)" \
    MODE_MASK=False \
    FRCNN.BATCH_PER_IM=64 \
    PREPROC.TRAIN_SHORT_EDGE_SIZE="[500,800]" \
    TRAIN.EVAL_PERIOD=20 \
    TRAIN.AUGTYPE_LAB='default' \
    TRAIN.AUGTYPE='strong' \
    TRAIN.CONFIDENCE=0.9 \
    TRAIN.WU=2

Tensorboard

All training logs and tensorboard info are under ${PRJROOT}/detection/train_log. Visualize using

tensorboard --logdir=${PRJROOT}/detection/train_log

Citation

@inproceedings{sohn2020detection,
  title={A Simple Semi-Supervised Learning Framework for Object Detection},
  author={Kihyuk Sohn and Zizhao Zhang and Chun-Liang Li and Han Zhang and Chen-Yu Lee and Tomas Pfister},
  year={2020},
  booktitle={arXiv:2005.04757}
}

Acknowledgement

Owner
Google Research
Google Research
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022