Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

Related tags

Deep LearningGD-Thief
Overview

GD-Thief

Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includes includes all shared files, all files from shared drives, and all files from domain drives that the target has access to.

HOW TO

For an illustrated walkthrough, check out my blog post.

Create a new Google Cloud Platform (GCP) project

Steps to get the Google API Access Token needed for connecting to the API

  1. Create a burner Gmail/google account
  2. Login to said account
  3. Navigate to the Google Cloud Console
  4. Next to "Google Cloud Platform," click the "Select a project" Down arrow. A dialog listing current projects appears.
  5. Click New Project. The New Project screen appears.
  6. In the Project Name field, enter a descriptive name for your project.
  7. (Optional) To edit the Project ID, click Edit. The project ID can't be changed after the project is created, so choose an ID that meets your needs for the lifetime of the project.
  8. Click Create. The console navigates to the Dashboard page and your project is created within a few minutes.

Enable a Google Workspace API

  1. Next to "Google Cloud Platform," click the Down arrow and select the project you just created from the dropdown list.
  2. In the top-left corner, click Menu > APIs & Services.
  3. Click Enable APIs and Services. The "Welcome to API Library" page appears.
  4. In the search field, enter "Google Drive".
  5. Click the Google Drive API. The API page appears.
  6. Click Enable. The Overview page appears.

Configure OAuth Consent screen

  1. On the left side of the Overview page click Credentials. The credential page for your project appears.
  2. Click Configure Consent Screen. The "OAuth consent screen" screen appears.
  3. Click the External user type for your app.
  4. Click Create. A second "OAuth consent screen" screen appears.
  5. Fill out the form:
    • Enter an Application Name in the App name field
    • Enter your burner email address in the User support email field.
    • Enter your burner email address in the Developer contact information field.
  6. Click Save and Continue. The "Scopes" page appears.
  7. Click Add or Remove Scopes. The "Update selected scopes" page appears.
  8. Check all of the Google Drive scopes to use in the app. GD scopes cover 2 pages, so click the next page and ensure that you check them all.
  9. Click Update. A list of scopes for your app appears.
  10. Click Save and Continue. The "Edit app registration" page appears.
  11. Click Save and Continue. The "OAuth consent screen" appears.

Create a credential

  1. Click Create Credentials and select OAuth client ID. The "Create OAuth client ID" page appears.
  2. Click the Application type drop-down list and select Desktop Application.
  3. In the name field, type a name for the credential. This name is only shown in the Cloud Console.
  4. Click Create. The OAuth client created screen appears. This screen shows the Client ID and Client secret.
  5. Click OK. The newly created credential appears under "OAuth 2.0 Client IDs."
  6. Click the download button to the right of the newly-created OAuth 2.0 Client ID. This copies a client secret JSON file to your desktop. Note the location of this file.
  7. Rename the client secret JSON file to "credentials.json" and move it to the gd_thief/credentials directory.

Add the victim's Google account to the Application's Test Users

In order to be able to run this script against the victim, you will need to add their Google account to the Test Users list for the App you just created

  1. On the Left side of the screen click OAuth consent screen. You "OAuth Consent Screen" page appears.
  2. Under Test Users click the Add Users button.
  3. Enter the victim's Gmail address in the email address field.
  4. Click the save button.

First Time running gd_thief

Upon gaining access to a Target's Google account, you can run gd_thief

  1. The first time running gd_thief, the script opens a new window prompting you to authorize access to your data:
    1. If you are signed in to multiple Google accounts, you are asked to select one account to use for the authorization. Make sure you select the victim's Google account

Dependencies

Google API Libraries: pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib

Usage:

usage:
python3 gd_thief.py [-h] -m [{dlAll, dlDict[-d <DICTIONARY FILE PATH>]}
	[-t <THREAD COUNT>]

help:

This Module will connect to Google's API using an access token and exfiltrate files
from a target's Google Drive.  It will output exfiltrated files to the ./loot directory

arguments:
        -m [{dlAll, dlDict}],
                --mode [{dlAll, dlDict}]
                The mode of file download
                Can be "dlAll", "dlDict [-d <DICTIONARY FILE PATH>]", or... (More options to come)

optional arguments:
        -d <DICTIONARY FILE PATH>, --dict <DICTIONARY FILE PATH>
                        Path to the dictionary file. Mandatory with download mode"-m, --mode dlDict"
                        You can use the provided dictionary, per example: "-d ./dictionaries/secrets-keywords.txt"
        -t <THREAD COUNT>, --threads <THREAD COUNT>
                        Number of threads. (Too many could exceeed Google's rate limit threshold)

        -h, --help
                show this help message and exit

NOTES:

  • Setting the thread count too high will cause an HTTP 403 "Rate limit exceeded," indicating that the user has reached Google Drive API's maximum request rate.
    • The thread count limit vaires from machine to machine. I've set it to 250 on a Macbook Pro, while 250 was too high for my Windows 10 Desktop

REFERENCES:

TODO:

  1. Threading
  2. Error Checking
  3. Wordlist file content search and download
  4. File type download
  5. Snort Sensitive Data regex file content search and download
  6. Optical Character Recognition (OCR)

Special Thanks:

Thank you to my good friend Cedric Owens for helping me with the threading piece!

Owner
Antonio Piazza
Antonio Piazza
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022