A toolset for creating Qualtrics-based IAT experiments

Overview

Qualtrics IAT Tool

A web app for generating the Implicit Association Test (IAT) running on Qualtrics

Online Web App

The app is hosted by Streamlit, a Python-based web framework. You can use the app here: Qualtrics IAT Tool.

Run Web App Offline

Alternatively, you can run the app offline. The general steps are:

  1. Download the latest version of the repository.
  2. Install Python and Streamlit.
  3. Run the web app in a Terminal with the command: streamlit run your_directory/qualtrics_iat/web_app.py

Citation:

Cui Y., Robinson, J.D., Kim, S.K., Kypriotakis G., Green C.E., Shete S.S., & Cinciripini P.M., An open source web app for creating and scoring Qualtrics-based implicit association test. Behavior Research Methods (submitted)

Key Functionalities

The web app has three key functionalities: IAT Generator, Qualtrics Tools, and IAT Data Scorer. Each functionality is clearly described on the web app regarding what parameters are expected and what they mean. If you have any questions, please feel free to leave a comment or send your inquiries to me.

IAT Generator

In this section, you can generate the Qualtrics survey template to run the IAT experiment. Typically, you need to consider specifying the following parameters. We'll use the classic flower-insect IAT as an example. As a side note, there are a few other IAT tasks (e.g., gender-career) in the app for your reference.

  • Positive Target Concept: Flower
  • Negative Target Concept: Insect
  • Positive Target Stimuli: Orchid, Tulip, Rose, Daffodil, Daisy, Lilac, Lily
  • Negative Target Stimuli: Wasp, Flea, Roach, Centipede, Moth, Bedbug, Gnat
  • Positive Attribute Concept: Pleasant
  • Negative Attribute Concept: Unpleasant
  • Positive Attribute Stimuli: Joy, Happy, Laughter, Love, Friend, Pleasure, Peace, Wonderful
  • Negative Attribute Stimuli: Evil, Agony, Awful, Nasty, Terrible, Horrible, Failure, War

Once you specify these parameters, you can generate a Qualtrics template file, from which you can create a Qualtrics survey that is ready to be administered. Please note that not all Qualtrics account types support creating surveys from a template. Alternatively, you can obtain the JavaScript code of running the IAT experiment and add the code to a Qualtrics question. If you do this, please make sure that you set the proper embedded data fields.

Qualtrics Tools

In this section, you can directly interact with the Qualtrics server by invoking its APIs. To use these APIs, you need to obtain the token in your account settings. Key functionalities include:

  • Upload Images to Qualtrics Graphic Library: You can upload images from your local computer to your Qualtrics Graphics Library. You need to specify the library ID # and the name of the folder to which the images will be uploaded. If the upload succeeds, the web app will return the URLs for these images. You can set these URLs as stimuli in the IAT if your experiment uses pictures.

  • Create Surveys: You can create surveys by uploading a QSF file or the JSON text. Please note that the QSF file uses JSON as its content. If you're not sure about the JSON content, you can inspect a template file.

  • Export Survey Responses: You can export a survey's responses for offline processing. You need to specify the library ID # and the export file format (e.g., csv).

  • Delete Images: You can delete images from your Qualtrics Graphics Library. You need to specify the library ID # and the IDs for the images that you want to delete.

  • Delete Survey: You can delete surveys from your Qualtrics Library. You need to specify the survey ID #.

IAT Data Scorer

In this section, you can score the IAT data from the exported survey response. Currently, there are two calculation algorithms supported: the conventional and the improved.

Citation for the algorithms: Greenwald et al. Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social Psychology 2003 (85)2:192-216

The Conventional Algorithm

  1. Use data from B4 & B7 (counter-balanced order will be taken care of in the calculation).
  2. Nonsystematic elimination of subjects for excessively slow responding and/or high error rates.
  3. Drop the first two trials of each block.
  4. Recode latencies outside 300/3,000 boundaries to the nearer boundary value.
  5. 5.Log-transform the resulting values.
  6. Average the resulting values for each of the two blocks.
  7. Compute the difference: B7 - B4.

The Improved Algorithm

  1. Use data from B3, B4, B6, & B7 (counter-balanced order will be taken care of in the calculation).
  2. Eliminate trials with latencies > 10,000 ms; Eliminate subjects for whom more than 10% of trials have latency less than 300 ms.
  3. Use all trials; Delete trials with latencies below 400 ms (alternative).
  4. Compute mean of correct latencies for each block. Compute SD of correct latencies for each block (alternative).
  5. Compute one pooled SD for all trials in B3 & B6, another for B4 & B7; Compute one pooled SD for correct trials in B3 & B6, another for B4 & B7 (alternative).
  6. Replace each error latency with block mean (computed in Step 5) + 600 ms; Replace each error latency with block mean + 2 x block SD of correct responses (alternative 1); Use latencies to correct responses when correction to error responses is required (alternative 2).
  7. Average the resulting values for each of the four blocks.
  8. Compute two differences: B6 - B3 and B7 - B4.
  9. Divide each difference by its associated pooled-trials SD.
  10. Average the two quotients.

Questions?

If you have any questions or would like to contribute to this project, please send me an email: [email protected].

License

MIT License

Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023