(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

Overview

IsoTree

Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular Isolation Forest, for outlier/anomaly detection, plus additions for imputation of missing values, distance/similarity calculation between observations, and handling of categorical data. Written in C++ with interfaces for Python and R. An additional wrapper for Ruby can be found here.

The new concepts in this software are described in:

Description

Isolation Forest is an algorithm originally developed for outlier detection that consists in splitting sub-samples of the data according to some attribute/feature/column at random. The idea is that, the rarer the observation, the more likely it is that a random uniform split on some feature would put outliers alone in one branch, and the fewer splits it will take to isolate an outlier observation like this. The concept is extended to splitting hyperplanes in the extended model (i.e. splitting by more than one column at a time), and to guided (not entirely random) splits in the SCiForest model that aim at isolating outliers faster and finding clustered outliers.

Note that this is a black-box model that will not produce explanations or importances - for a different take on explainable outlier detection see OutlierTree.

image

(Code to produce these plots can be found in the R examples in the documentation)

Comparison against other libraries

The folder timings contains a speed comparison against other Isolation Forest implementations in Python (SciKit-Learn, EIF) and R (IsolationForest, isofor, solitude). From the benchmarks, IsoTree tends to be at least 1 order of magnitude faster than the libraries compared against in both single-threaded and multi-threaded mode.

Example timings for 100 trees and different sample sizes, CovType dataset - see the link above for full benchmark and details:

Library Model Time (s) 256 Time (s) 1024 Time (s) 10k
isotree orig 0.00161 0.00631 0.0848
isotree ext 0.00326 0.0123 0.168
eif orig 0.149 0.398 4.99
eif ext 0.16 0.428 5.06
h2o orig 9.33 11.21 14.23
h2o ext 1.06 2.07 17.31
scikit-learn orig 8.3 8.01 6.89
solitude orig 32.612 34.01 41.01

Example AUC as outlier detector in typical datasets (notebook to produce results here):

  • Satellite dataset:
Library AUC defaults AUC grid search
isotree 0.70 0.84
eif - 0.714
scikit-learn 0.687 0.74
h2o 0.662 0.748
  • Annthyroid dataset:
Library AUC defaults AUC grid search
isotree 0.80 0.982
eif - 0.808
scikit-learn 0.836 0.836
h2o 0.80 0.80

(Disclaimer: these are rather small datasets and thus these AUC estimates have high variance)

Non-random splits

While the original idea behind isolation forests consisted in deciding splits uniformly at random, it's possible to get better performance at detecting outliers in some datasets (particularly those with multimodal distributions) by determining splits according to an information gain criterion instead. The idea is described in "Revisiting randomized choices in isolation forests" along with some comparisons of different split guiding criteria.

Distance / similarity calculations

General idea was extended to produce distance (alternatively, similarity) between observations according to how many random splits it takes to separate them - idea is described in "Distance approximation using Isolation Forests".

Imputation of missing values

The model can also be used to impute missing values in a similar fashion as kNN, by taking the values from observations in the terminal nodes of each tree in which an observation with missing values falls at prediction time, combining the non-missing values of the other observations as a weighted average according to the depth of the node and the number of observations that fall there. This is not related to how the model handles missing values internally, but is rather meant as a faster way of imputing by similarity. Quality is usually not as good as chained equations, but the method is a lot faster and more scalable. Recommended to use non-random splits when used as an imputer. Details are described in "Imputing missing values with unsupervised random trees".

Highlights

There's already many available implementations of isolation forests for both Python and R (such as the one from the original paper's authors' or the one in SciKit-Learn), but at the time of writing, all of them are lacking some important functionality and/or offer sub-optimal speed. This particular implementation offers the following:

  • Implements the extended model (with splitting hyperplanes) and split-criterion model (with non-random splits).
  • Can handle missing values (but performance with them is not so good).
  • Can handle categorical variables (one-hot/dummy encoding does not produce the same result).
  • Can use a mixture of random and non-random splits, and can split by weighted/pooled gain (in addition to simple average).
  • Can produce approximated pairwise distances between observations according to how many steps it takes on average to separate them down the tree.
  • Can produce missing value imputations according to observations that fall on each terminal node.
  • Can work with sparse matrices.
  • Supports sample/observation weights, either as sampling importance or as distribution density measurement.
  • Supports user-provided column sample weights.
  • Can sample columns randomly with weights given by kurtosis.
  • Uses exact formula (not approximation as others do) for harmonic numbers at lower sample and remainder sizes, and a higher-order approximation for larger sizes.
  • Can fit trees incrementally to user-provided data samples.
  • Produces serializable model objects with reasonable file sizes.
  • Can convert the models to treelite format (Python-only and depending on the parameters that are used) (example here).
  • Can translate the generated trees into SQL statements.
  • Fast and multi-threaded C++ code with an ISO C interface, which is architecture-agnostic, multi-platform, and with the only external dependency (Robin-Map) being optional. Can be wrapped in languages other than Python/R/Ruby.

(Note that categoricals, NAs, and density-like sample weights, are treated heuristically with different options as there is no single logical extension of the original idea to them, and having them present might degrade performance/accuracy for regular numerical non-missing observations)

Installation

  • Python:
pip install isotree

or if that fails:

pip install --no-use-pep517 isotree

Note for macOS users: on macOS, the Python version of this package might compile without multi-threading capabilities. In order to enable multi-threading support, first install OpenMP:

brew install libomp

And then reinstall this package: pip install --force-reinstall isotree.


  • R:
install.packages("isotree")
  • C and C++:
git clone --recursive https://www.github.com/david-cortes/isotree.git
cd isotree
mkdir build
cd build
cmake -DUSE_MARCH_NATIVE=1 ..
cmake --build .

### for a system-wide install in linux
sudo make install
sudo ldconfig

(Will build as a shared object - linkage is then done with -lisotree)

Be aware that the snippet above includes option -DUSE_MARCH_NATIVE=1, which will make it use the highest-available CPU instruction set (e.g. AVX2) and will produces objects that might not run on older CPUs - to build more "portable" objects, remove this option from the cmake command.

The package has an optional dependency on the Robin-Map library, which is added to this repository as a linked submodule. If this library is not found under /src, will use the compiler's own hashmaps, which are less optimal.

  • Ruby:

See external repository with wrapper.

Sample usage

Warning: default parameters in this implementation are very different from default parameters in others such as SciKit-Learn's, and these defaults won't scale to large datasets (see documentation for details).

  • Python:

(Library is SciKit-Learn compatible)

import numpy as np
from isotree import IsolationForest

### Random data from a standard normal distribution
np.random.seed(1)
n = 100
m = 2
X = np.random.normal(size = (n, m))

### Will now add obvious outlier point (3, 3) to the data
X = np.r_[X, np.array([3, 3]).reshape((1, m))]

### Fit a small isolation forest model
iso = IsolationForest(ntrees = 10, nthreads = 1)
iso.fit(X)

### Check which row has the highest outlier score
pred = iso.predict(X)
print("Point with highest outlier score: ",
      X[np.argsort(-pred)[0], ])
  • R:

(see documentation for more examples - help(isotree::isolation.forest))

### Random data from a standard normal distribution
library(isotree)
set.seed(1)
n <- 100
m <- 2
X <- matrix(rnorm(n * m), nrow = n)

### Will now add obvious outlier point (3, 3) to the data
X <- rbind(X, c(3, 3))

### Fit a small isolation forest model
iso <- isolation.forest(X, ntrees = 10, nthreads = 1)

### Check which row has the highest outlier score
pred <- predict(iso, X)
cat("Point with highest outlier score: ",
    X[which.max(pred), ], "\n")
  • C++:

The package comes with two different C++ interfaces: (a) a struct-based interface which exposes the full library's functionalities but makes little checks on the inputs it receives and is perhaps a bit difficult to use due to the large number of arguments that functions require; and (b) a scikit-learn-like interface in which the model exposes a single class with methods like 'fit' and 'predict', which is less flexible than the struct-based interface but easier to use and the function signatures disallow some potential errors due to invalid parameter combinations.

See files: isotree_cpp_ex.cpp for an example with the struct-based interface; and isotree_cpp_oop_ex.cpp for an example with the scikit-learn-like interface.

Note that the second interface does not expose all the functionalities - for example, it only supports inputs of classes 'double' and 'int', while the struct-based interface also supports 'float'/'size_t'.

  • C:

See file isotree_c_ex.c.

Note that the C interface is a simple wrapper over the scikit-learn-like C++ interface, but using only ISO C bindings for better compatibility and easier wrapping in other languages.

  • Ruby

See external repository with wrapper.

Examples

  • Python: example notebook here, (also example as imputer in sklearn pipeline here, and example converting to treelite here).
  • R: examples available in the documentation (help(isotree::isolation.forest), link to CRAN).
  • C and C++: see short examples in the section above.
  • Ruby: see external repository with wrapper.

Documentation

  • Python: documentation is available at ReadTheDocs.
  • R: documentation is available internally in the package (e.g. help(isolation.forest)) and in CRAN.
  • C++: documentation is available in the public header (include/isotree.hpp) and in the source files. See also the header for the scikit-learn-like interface (include/isotree_oop.hpp).
  • C: interface is not documented per-se, but the same documentation from the C++ header applies to it. See also its header for some non-comprehensive comments about the parameters that functions take (include/isotree_c.h).
  • Ruby: see external repository with wrapper for the syntax and the Python docs for details about the parameters.

Help wanted

The package does not currenly have any functionality for visualizing trees. Pull requests adding such functionality would be welcome.

References

  • Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest." 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
  • Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation-based anomaly detection." ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.
  • Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner. "Extended Isolation Forest." arXiv preprint arXiv:1811.02141 (2018).
  • Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "On detecting clustered anomalies using SCiForest." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010.
  • https://sourceforge.net/projects/iforest/
  • https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree
  • Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.
  • Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362 (2019).
  • Cortes, David. "Imputing missing values with unsupervised random trees." arXiv preprint arXiv:1911.06646 (2019).
  • Cortes, David. "Revisiting randomized choices in isolation forests." arXiv preprint arXiv:2110.13402 (2021).
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022