A general, feasible, and extensible framework for classification tasks.

Overview

Pytorch Classification

  • A general, feasible and extensible framework for 2D image classification.

Features

  • Easy to configure (model, hyperparameters)
  • Training progress monitoring and visualization
  • Weighted sampling / weighted loss / kappa loss / focal loss for imbalance dataset
  • Kappa metric for evaluating model on imbalance dataset
  • Different learning rate schedulers and warmup support
  • Data augmentation
  • Multiple GPUs support

Installation

Recommended environment:

  • python 3.8+
  • pytorch 1.7.1+
  • torchvision 0.8.2+
  • tqdm
  • munch
  • packaging
  • tensorboard

To install the dependencies, run:

$ git clone https://github.com/YijinHuang/pytorch-classification.git
$ cd pytorch-classification
$ pip install -r requirements.txt

How to use

1. Use one of the following two methods to build your dataset:

  • Folder-form dataset:

Organize your images as follows:

├── your_data_dir
    ├── train
        ├── class1
            ├── image1.jpg
            ├── image2.jpg
            ├── ...
        ├── class2
            ├── image3.jpg
            ├── image4.jpg
            ├── ...
        ├── class3
        ├── ...
    ├── val
    ├── test

Here, val and test directory have the same structure of train. Then replace the value of 'data_path' in BASIC_CONFIG in configs/default.yaml with path to your_data_dir and keep 'data_index' as null.

  • Dict-form dataset:

Define a dict as follows:

your_data_dict = {
    'train': [
        ('path/to/image1', 0), # use int. to represent the class of images (start from 0)
        ('path/to/image2', 0),
        ('path/to/image3', 1),
        ('path/to/image4', 2),
        ...
    ],
    'test': [
        ('path/to/image5', 0),
        ...
    ],
    'val': [
        ('path/to/image6', 0),
        ...
    ]
}

Then use pickle to save it:

import pickle
pickle.dump(your_data_dict, open('path/to/pickle/file', 'wb'))

Finally, replace the value of 'data_index' in BASIC_CONFIG in configs/default.yaml with 'path/to/pickle/file' and set 'data_path' as null.

2. Update your training configurations and hyperparameters in configs/default.yaml.

3. Run to train:

$ CUDA_VISIBLE_DEVICES=x python main.py

Optional arguments:

-c yaml_file      Specify the config file (default: configs/default.yaml)
-o                Overwrite save_path and log_path without warning
-p                Print configs before training

4. Monitor your training progress in website 127.0.0.1:6006 by running:

$ tensorborad --logdir=/path/to/your/log --port=6006

Tips to use tensorboard on a remote server

Owner
Eugene
Eugene
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022