Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Overview

Large-Scale Long-Tailed Recognition in an Open World

[Project] [Paper] [Blog]

Overview

Open Long-Tailed Recognition (OLTR) is the author's re-implementation of the long-tail recognizer described in:
"Large-Scale Long-Tailed Recognition in an Open World"
Ziwei Liu*Zhongqi Miao*Xiaohang ZhanJiayun WangBoqing GongStella X. Yu  (CUHK & UC Berkeley / ICSI)  in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019, Oral Presentation

Further information please contact Zhongqi Miao and Ziwei Liu.

Update notifications

  • 03/04/2020: We changed all valirables named selfatt to modulatedatt so that the attention module can be properly trained in the second stage for Places-LT. ImageNet-LT does not have this problem since the weights are not freezed. We have updated new results using fixed code, which is still better than reported. The weights are also updated. Thanks!
  • 02/11/2020: We updated configuration files for Places_LT dataset. The current results are a little bit higher than reported, even with updated F-measure calculation. One important thing to be considered is that we have unfrozon the model weights for the first stage training of Places-LT, which means it is not suitable for single-GPU training in most cases (we used 4 1080ti in our implementation). However, for the second stage, since the memory and center loss do not support multi-GPUs currently, please switch back to single-GPU training. Thank you very much!
  • 01/29/2020: We updated the False Positive calculation in util.py so that the numbers are normal again. The reported F-measure numbers in the paper might be a little bit higher than actual numbers for all baselines. We will update it as soon as possible. We have updated the new F-measure number in the following table. Thanks.
  • 12/19/2019: Updated modules with 'clone()' methods and set use_fc in ImageNet-LT stage-1 config to False. Currently, the results for ImageNet-LT is comparable to reported numbers in the paper (a little bit better), and the reproduced results are updated below. We also found the bug in Places-LT. We will update the code and reproduced results as soon as possible.
  • 08/05/2019: Fixed a bug in utils.py. Update re-implemented ImageNet-LT weights at the end of this page.
  • 05/02/2019: Fixed a bug in run_network.py so the models train properly. Update configuration file for Imagenet-LT stage 1 training so that the results from the paper can be reproduced.

Requirements

Data Preparation

NOTE: Places-LT dataset have been updated since the first version. Please download again if you have the first version.

  • First, please download the ImageNet_2014 and Places_365 (256x256 version). Please also change the data_root in main.py accordingly.

  • Next, please download ImageNet-LT and Places-LT from here. Please put the downloaded files into the data directory like this:

data
  |--ImageNet_LT
    |--ImageNet_LT_open
    |--ImageNet_LT_train.txt
    |--ImageNet_LT_test.txt
    |--ImageNet_LT_val.txt
    |--ImageNet_LT_open.txt
  |--Places_LT
    |--Places_LT_open
    |--Places_LT_train.txt
    |--Places_LT_test.txt
    |--Places_LT_val.txt
    |--Places_LT_open.txt

Download Caffe Pre-trained Models for Places_LT Stage_1 Training

  • Caffe pretrained ResNet152 weights can be downloaded from here, and save the file to ./logs/caffe_resnet152.pth

Getting Started (Training & Testing)

ImageNet-LT

  • Stage 1 training:
python main.py --config ./config/ImageNet_LT/stage_1.py
  • Stage 2 training:
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py
  • Close-set testing:
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py --test
  • Open-set testing (thresholding)
python main.py --config ./config/ImageNet_LT/stage_2_meta_embedding.py --test_open
  • Test on stage 1 model
python main.py --config ./config/ImageNet_LT/stage_1.py --test

Places-LT

  • Stage 1 training (At this stage, multi-GPU might be necessary since we are finetuning a ResNet-152.):
python main.py --config ./config/Places_LT/stage_1.py
  • Stage 2 training (At this stage, only single-GPU is supported, please switch back to single-GPU training.):
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py
  • Close-set testing:
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py --test
  • Open-set testing (thresholding)
python main.py --config ./config/Places_LT/stage_2_meta_embedding.py --test_open

Reproduced Benchmarks and Model Zoo (Updated on 03/05/2020)

ImageNet-LT Open-Set Setting

Backbone Many-Shot Medium-Shot Few-Shot F-Measure Download
ResNet-10 44.2 35.2 17.5 44.6 model

Places-LT Open-Set Setting

Backbone Many-Shot Medium-Shot Few-Shot F-Measure Download
ResNet-152 43.7 40.2 28.0 50.0 model

CAUTION

The current code was prepared using single GPU. The use of multi-GPU can cause problems except for the first stage of Places-LT.

License and Citation

The use of this software is released under BSD-3.

@inproceedings{openlongtailrecognition,
  title={Large-Scale Long-Tailed Recognition in an Open World},
  author={Liu, Ziwei and Miao, Zhongqi and Zhan, Xiaohang and Wang, Jiayun and Gong, Boqing and Yu, Stella X.},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}
Owner
Zhongqi Miao
Zhongqi Miao
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022