Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Related tags

Deep Learningsvox2
Overview

Plenoxels: Radiance Fields without Neural Networks

Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa

UC Berkeley

Website and video: https://alexyu.net/plenoxels

arXiv: https://arxiv.org/abs/2112.05131

Note: This is a preliminary release. We have not carefully tested everything, but feel that it would be better to first put the code out there.

Also, despite the name, it's not strictly intended to be a successor of svox

Citation:

@misc{yu2021plenoxels,
      title={Plenoxels: Radiance Fields without Neural Networks}, 
      author={{Alex Yu and Sara Fridovich-Keil} and Matthew Tancik and Qinhong Chen and Benjamin Recht and Angjoo Kanazawa},
      year={2021},
      eprint={2112.05131},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This contains the official optimization code. A JAX implementation is also available at https://github.com/sarafridov/plenoxels. However, note that the JAX version is currently feature-limited, running in about 1 hour per epoch and only supporting bounded scenes (at present).

Fast optimization

Overview

Setup

First create the virtualenv; we recommend using conda:

conda env create -f environment.yml
conda activate plenoxel

Then clone the repo and install the library at the root (svox2), which includes a CUDA extension.

If your CUDA toolkit is older than 11, then you will need to install CUB as follows: conda install -c bottler nvidiacub. Since CUDA 11, CUB is shipped with the toolkit.

To install the main library, simply run

pip install .

In the repo root directory.

Getting datasets

We have backends for NeRF-Blender, LLFF, NSVF, and CO3D dataset formats, and the dataset will be auto-detected. Please get the NeRF-synthetic and LLFF datasets from:

https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

We provide a processed Tanks and temples dataset (with background) in NSVF format at: https://drive.google.com/file/d/1PD4oTP4F8jTtpjd_AQjCsL4h8iYFCyvO/view?usp=sharing

Note this data should be identical to that in NeRF++

Voxel Optimization (aka Training)

For training a single scene, see opt/opt.py. The launch script makes this easier.

Inside opt/, run ./launch.sh <exp_name> <GPU_id> <data_dir> -c <config>

Where <config> should be configs/syn.json for NeRF-synthetic scenes, configs/llff.json for forward-facing scenes, and configs/tnt.json for tanks and temples scenes, for example.

The dataset format will be auto-detected from data_dir. Checkpoints will be in ckpt/exp_name.

Evaluation

Use opt/render_imgs.py

Usage, (in opt/) python render_imgs.py <CHECKPOINT.npz> <data_dir>

By default this saves all frames, which is very slow. Add --no_imsave to avoid this.

Rendering a spiral

Use opt/render_imgs_circle.py

Usage, (in opt/) python render_imgs_circle.py <CHECKPOINT.npz> <data_dir>

Parallel task executor

We provide a parallel task executor based on the task manager from PlenOctrees to automatically schedule many tasks across sets of scenes or hyperparameters. This is used for evaluation, ablations, and hypertuning See opt/autotune.py. Configs in opt/tasks/*.json

For example, to automatically train and eval all synthetic scenes: you will need to change train_root and data_root in tasks/eval.json, then run:

python autotune.py -g '<space delimited GPU ids>' tasks/eval.json

For forward-facing scenes

python autotune.py -g '<space delimited GPU ids>' tasks/eval_ff.json

For Tanks and Temples scenes

python autotune.py -g '<space delimited GPU ids>' tasks/eval_tnt.json

Using a custom image set

First make sure you have colmap installed. Then

(in opt/) bash scripts/proc_colmap.sh <img_dir>

Where <img_dir> should be a directory directly containing png/jpg images from a normal perspective camera. For custom datasets we adopt a data format similar to that in NSVF https://github.com/facebookresearch/NSVF

You should be able to use this dataset directly afterwards. The format will be auto-detected.

To view the data use: python scripts/view_data.py <img_dir>

This should launch a server at localhost:8889

You may need to tune the TV. For forward-facing scenes, often making the TV weights 10x higher is helpful (configs/llff_hitv.json). For the real lego scene I used the config configs/custom.json.

Random tip: how to make pip install faster for native extensions

You may notice that this CUDA extension takes forever to install. A suggestion is using ninja. On Ubuntu, install it with sudo apt install ninja-build. Then set the environment variable MAX_JOBS to the number of CPUS to use in parallel (e.g. 12) in your shell startup script. This will enable parallel compilation and significantly improve iteration speed.

Owner
Alex Yu
Researcher at UC Berkeley
Alex Yu
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021