A dual benchmarking study of visual forgery and visual forensics techniques

Overview

A dual benchmarking study of facial forgery and facial forensics

In recent years, visual forgery has reached a level of sophistication that humans cannot identify fraud, which poses a significant threat to information security. A wide range of malicious applications have emerged, such as fake news, defamation or blackmailing of celebrities, impersonation of politicians in political warfare, and the spreading of rumours to attract views. As a result, a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend. In this paper, we present a benchmark that provides in-depth insights into visual forgery and visual forensics, using a comprehensive and empirical approach. More specifically, we develop an independent framework that integrates state-of-the-arts counterfeit generators and detectors, and measure the performance of these techniques using various criteria. We also perform an exhaustive analysis of the benchmarking results, to determine the characteristics of the methods that serve as a comparative reference in this never-ending war between measures and countermeasures.

Framework

When developing our dual benchmarking analysis of visual forgery and visual forensic techniques, we aimed to provide an extensible framework. To achieve this goal, we used a component-based design to integrate the techniques in a straightforward manner while maintaining their original performance. The below figure depicts the simplified architecture of the framework. The framework contains three layers. The first is a data access layer, which organises the underlying data objects, including the genuine and forged content generated by the visual forgery techniques. The second is a computing layer, which contains four modules: the visual forgery, visual forensics, modulation and evaluation modules. The visual forgery and visual forensics modules include the generation algorithms and forgery detection techniques, respectively. Both of these modules allow the user to easily integrate new algorithms for benchmarking. The modulation module uses a specified configuration to augment the content in order to validate different adverse conditions such as brightness and contrast. The evaluation module assesses the prediction results from the visual forensics module based on various metrics, and delivers statistics and findings to the application layer. Finally, users interact with the framework via the application layer to configure parameters and receive output visualisations.

Dual benchmarking framework.

Enviroment

pip install -r requirement.txt

Preprocess data

Extract fame from video and detect face in frame to save *.jpg image.

python extrac_face.py --inp in/ --output out/ --worker 1 --duration 4

--inp : folder contain video

--output : folder output .jpg image

--worker : number thread extract

--duration : number of frame skip each extract time

Train

Preprocess for GAN-fingerprint

python data_preparation_gan.py in_dir /hdd/tam/df_in_the_wild/image/train --out_dir /hdd/tam/df_in_the_wild/gan/train resolution 128

Preprocess for visual model

python -m feature_model.visual_artifact.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for headpose model

python -m feature_model.headpose_forensic.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_visual.pkl --number_iter 1000

Preprocess for spectrum

python -m feature_model.spectrum.process_data --input_real /hdd/tam/df_in_the_wild/image/train/0_real --input_fake /hdd/tam/df_in_the_wild/image/train/1_df --output /hdd/tam/df_in_the_wild/train_spectrum.pkl --number_iter 1000

Train

Train for cnn

python train.py --train_set data/Celeb-DF/image/train/ --val_set data/Celeb-DF/image/test/ --batch_size 32 --image_size 128 --workers 16 --checkpoint xception_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt --print_every 10000000 xception_torch

Train for feature model

python train.py --train_set /hdd/tam/df_in_the_wild/train_visual.pkl --checkpoint spectrum_128_df_inthewild_checkpoint/ --gpu_id 0 --resume model_pytorch_1.pt spectrum

Eval

Eval for cnn

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.0 --batch_size 32 --image_size 128 --workers 16 --checkpoint efficientdual_128_df_inthewild_checkpoint/ --resume model_dualpytorch3_1.pt efficientdual

python eval.py --val_set /hdd/tam/df_in_the_wild/image/test/ --adj_brightness 1.0 --adj_contrast 1.5 --batch_size 32 --image_size 128 --workers 16 --checkpoint capsule_128_df_inthewild_checkpoint/ --resume 4 capsule

``

Eval for feature model

python eval.py --val_set ../DeepFakeDetection/Experiments_DeepFakeDetection/test_dfinthewild.pkl --checkpoint ../DeepFakeDetection/Experiments_DeepFakeDetection/model_df_inthewild.pkl --resume model_df_inthewild.pkl spectrum

Detect

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path efficientdual_mydata_checkpoint/model_dualpytorch3_1.pt --gpu_id 0 efficientdual

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path xception_mydata_checkpoint/model_pytorch_0.pt --gpu_id 0 xception_torch

python detect_img.py --img_path /hdd/tam/extend_data/image/test/1_df/reference_0_113.jpg --model_path capsule_mydata_checkpoint/capsule_1.pt --gpu_id 0 capsule

References

[1] https://github.com/nii-yamagishilab/Capsule-Forensics-v2

[2] Nguyen, H. H., Yamagishi, J., & Echizen, I. (2019). Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, 2307–2311.

[3] https://github.com/PeterWang512/FALdetector

[4] Wang, S.-Y., Wang, O., Owens, A., Zhang, R., & Efros, A. A. (2019). Detecting Photoshopped Faces by Scripting Photoshop.

[5] Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: Learning to Detect Manipulated Facial Images.

[6] Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep Fake Image Detection Based on Pairwise Learning. Applied Sciences, 10(1), 370.

[7] Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2019). MesoNet: A compact facial video forgery detection network. 10th IEEE International Workshop on Information Forensics and Security, WIFS 2018.

[8] https://github.com/DariusAf/MesoNet

[9] Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2019). Celeb-DF: A New Dataset for DeepFake Forensics.

[10] https://github.com/deepfakeinthewild/deepfake_in_the_wild

[11] https://www.idiap.ch/dataset/deepfaketimit

[12] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF (v2): A new dataset for deepfake forensics,” arXiv preprint arXiv:1909.12962v3, 2018.

[13] Neves, J. C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., & Proença, H. (2019). Real or Fake? Spoofing State-Of-The-Art Face Synthesis Detection Systems. 13(9), 1–8.

[14] https://github.com/danmohaha/DSP-FWA

Owner
Ph.D. in Computer Science and Data Science
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023