Equivariant Imaging: Learning Beyond the Range Space

Related tags

Deep LearningEI
Overview

Equivariant Imaging: Learning Beyond the Range Space

arXiv GitHub Stars

Equivariant Imaging: Learning Beyond the Range Space

Dongdong Chen, Julián Tachella, Mike E. Davies.

The University of Edinburgh

In ICCV 2021 (oral)

flexible flexible Figure: Learning to image from only measurements. Training an imaging network through just measurement consistency (MC) does not significantly improve the reconstruction over the simple pseudo-inverse (). However, by enforcing invariance in the reconstructed image set, equivariant imaging (EI) performs almost as well as a fully supervised network. Top: sparse view CT reconstruction, Bottom: pixel inpainting. PSNR is shown in top right corner of the images.

EI is a new self-supervised, end-to-end and physics-based learning framework for inverse problems with theoretical guarantees which leverages simple but fundamental priors about natural signals: symmetry and low-dimensionality.

Get quickly started

  • Please find the blog post for a quick introduction of EI.
  • Please find the core implementation of EI at './ei/closure/ei.py' (ei.py).
  • Please find the 30 lines code get_started.py and the toy cs example to get started with EI.

Overview

The problem: Imaging systems capture noisy measurements of a signal through a linear operator + . We aim to learn the reconstruction function where

  • NO groundtruth data for training as most inverse problems don’t have ground-truth;
  • only a single forward operator is available;
  • has a non-trivial nullspace (e.g. ).

The challenge:

  • We have NO information about the signal set outside the range space of or .
  • It is IMPOSSIBLE to learn the signal set using alone.

The motivation:

We assume the signal set has a low-dimensional structure and is invariant to a groups of transformations (orthgonal matrix, e.g. shift, rotation, scaling, reflection, etc.) related to a group , such that and the sets and are the same. For example,

  • natural images are shift invariant.
  • in CT/MRI data, organs can be imaged at different angles making the problem invariant to rotation.

Key observations:

  • Invariance provides access to implicit operators with potentially different range spaces: where and . Obviously, should also in the signal set.
  • The composition is equivariant to the group of transformations : .

overview Figure: Learning with and without equivariance in a toy 1D signal inpainting task. The signal set consists of different scaling of a triangular signal. On the left, the dataset does not enjoy any invariance, and hence it is not possible to learn the data distribution in the nullspace of . In this case, the network can inpaint the signal in an arbitrary way (in green), while achieving zero data consistency loss. On the right, the dataset is shift invariant. The range space of is shifted via the transformations , and the network inpaints the signal correctly.

Equivariant Imaging: to learn by using only measurements , all you need is to:

  • Define:
  1. define a transformation group based on the certain invariances to the signal set.
  2. define a neural reconstruction function , e.g. where is the (approximated) pseudo-inverse of and is a UNet-like neural net.
  • Calculate:
  1. calculate as the estimation of .
  2. calculate by transforming .
  3. calculate by reconstructing from its measurement .

flowchart

  • Train: finally learn the reconstruction function by solving: +

Requirements

All used packages are listed in the Anaconda environment.yml file. You can create an environment and run

conda env create -f environment.yml

Test

We provide the trained models used in the paper which can be downloaded at Google Drive. Please put the downloaded folder 'ckp' in the root path. Then evaluate the trained models by running

python3 demo_test_inpainting.py

and

python3 demo_test_ct.py

Train

To train EI for a given inverse problem (inpainting or CT), run

python3 demo_train.py --task 'inpainting'

or run a bash script to train the models for both CT and inpainting tasks.

bash train_paper_bash.sh

Train your models

To train your EI models on your dataset for a specific inverse problem (e.g. inpainting), run

python3 demo_train.py --h
  • Note: you may have to implement the forward model (physics) if you manage to solve a new inverse problem.
  • Note: you only need to specify some basic settings (e.g. the path of your training set).

Citation

@inproceedings{chen2021equivariant,
title = {Equivariant Imaging: Learning Beyond the Range Space},
	author={Chen, Dongdong and Tachella, Juli{\'a}n and Davies, Mike E},
	booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
	year = {2021}
}
Owner
Dongdong Chen
Machine learning, Inverse problems
Dongdong Chen
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022