Distributed DataLoader For Pytorch Based On Ray

Overview

Dpex——用户无感知分布式数据预处理组件

一、前言

随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的CPU算力受限, 为了解决这个问题NVIDIA提出了scale up的方案——GPU数据预处理库DALI,Tensorflow给出了scale out的方案——分布式数据预处理组件DataService,而在这里我们给出Pytorch生态中的scale out方案——分布式数据预处理组件Dpex。

二、架构介绍(介绍Pytorch DataLoader本身的架构以及DistDataLoader的架构)

Dpex的采用了和Pytorch的DataLoader同样的架构设计并借助Ray将数据预处理任务调度至其他机器节点进行计算。

三、使用示例

不仅在设计上,Dpex的实现上也完全兼容Pytorch的DataLoader。当并行数据预处理时,若设置distribute_modeTrueDpexDataLoader使用 _RayDataLoaderIter实现分布式数据预处理,当设置为FalseDpexDataLoader退回到使用Pytorch本身的_MultiProcessingDataLoaderIter 实现并行数据预处理与加载。在Pytorch训练中使用Dpex非常的简单,只需要将使用到Pytorch的DataLoader的地方替换为Dpex中的DpexDataLoader即可,当你的训练机器本身为Ray集群中的一个节点时,设置 distribute_mode=True可以启用分布式数据预处理。在下面我们给出单卡训练,使用DataParallel进行多卡训练以及使用DDP进行多卡训练时使用Dpex的示例,具体可参考测试文件。
class DpexDataLoader(torch.utils.data.DataLoader): def init(self, dataset: Dataset[T_co], distribute_mode: Optional[bool] = False, head_address="auto", batch_size: Optional[int] = 1, shuffle: bool = False, sampler: Optional[Sampler[int]] = None, batch_sampler: Optional[Sampler[Sequence[int]]] = None, num_workers: int = 0, collate_fn: Optional[_collate_fn_t] = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[_worker_init_fn_t] = None, multiprocessing_context=None, generator=None, *, prefetch_factor: int = 2):

3.1 单卡训练

如下我们给出单卡训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

from torchvision import datasets
from torchvision.transforms import ToTensor
from Dpex import dataloader

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)
# use DpexDataLoader
train_loader = dataloader.DpexDataLoader(training_data, distribute_mode=True, num_workers=10, batch_size=100, shuffle=True)

for epoch in range(3):
    for index, (image, label) in enumerate(train_loader):
       # your train process
       pass

3.2 基于DataParallel的多卡训练

如下我们给出使用DataParallel并行训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset
from Dpex import dataloader

class MyOwnDataset(Dataset):
     pass
     
# use DpexDataLoader
data_loader = dataloader.DpexDataLoader(dataset=RandomDataset(input_size, data_size),
                                        distribute_mode=True, batch_size=batch_size, shuffle=True, num_workers=10)

class Model(nn.Module):
    pass
    
model = Model()

if torch.cuda.is_available():
    model.cuda()

if torch.cuda.device_count() > 1:
    model = nn.DataParallel(model)

for data in data_loader:
   # train your own model
   pass

3.3 基于DDP的多卡训练

如下我们给出使用DDP并行训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

import torch
import torch.nn as nn
from torch.utils.data import Dataset
from Dpex.dataloader import DpexDataLoader
from torch.utils.data.distributed import DistributedSampler

# start command: CUDA_VISIBLE_DEVICES=1,6,7 python -m torch.distributed.launch --nproc_per_node=2 pytorch_ddp.py
# 1) 初始化
torch.distributed.init_process_group(backend="nccl")

input_size = 5
output_size = 2
batch_size = 1
data_size = 90000

# 2) 配置每个进程的gpu
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)

class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

dataset = RandomDataset(input_size, data_size)
# 3)使用DistributedSampler
rand_loader = DpexDataLoader(dataset=dataset, distribute_mode=True, batch_size=batch_size, sampler=DistributedSampler(dataset), num_workers=10)

class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("  In Model: input size", input.size(),
              "output size", output.size())
        return output

model = Model(input_size, output_size)

# 4) 封装之前要把模型移到对应的gpu
model.to(device)

if torch.cuda.device_count() > 1:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # 5) 封装
    model = torch.nn.parallel.DistributedDataParallel(model,
                                                      device_ids=[local_rank],
                                                      output_device=local_rank)

for data in rand_loader:
    if torch.cuda.is_available():
        input_var = data
    else:
        input_var = data

    output = model(input_var)
    print("Outside: input size", input_var.size(), "output_size", output.size())

四、Benchmark

在接下来的Benchamark中我们核心展示两个部分的内容:

  • DpexDataLoader对于模型训练精度的影响
  • DpexDataLoader对于模型训练速度的影响

Dpex只是将单机数据预处理水平扩展到了多机以借助更多的算力来加速数据预处理而不改变数据本身的加载和与处理方式,所以本身对模型的精度不会有负面影响。对于数据预处理较重的情况

4.1 模型精度Benchmark

我们在FashionMNIST数据集上进行模型训练精度的Benchmark实验,具体代码细节见测试文件

Accuracy(%) Loss GPU Settings DpexDataLoader(distributed_mode=?) Epoch Learning rate Batch size
90.65 0.137 Single GPU True 40 0.001 100
91.09 0.112 Single GPU False 40 0.001 100
90.67 0.016 DataParallel True 40 0.001 100
90.32 0.008 DataParallel False 40 0.001 100
88.98 0.034 DDP True 40 0.001 100
89.84 0.030 DDP False 40 0.001 100

4.2 训练速度Benchmark

五、环境依赖:

Dpex借助Ray完成任务的跨机调度,所以若希望使用分布式数据预处理首先需要将你的训练机器构建成Ray的集群。Ray的集群构建细节具体参考Ray的相关文档

Owner
Dalong
I am now a master student in Tsinghua University and i major in software engeneering. Currently i am foucing on high performance graph learning system.
Dalong
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022