⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Overview

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances

This repository contains the code for Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances.

Reported running times are approximate, intended to give a general idea of how long each step will take. Estimates are based on times encountered while developing on Ubuntu 21.04 with hardware that includes an AMD Ryzen 9 3950X CPU, 64GB of memory, and an NVIDIA TITAN RTX GPU with 24GB of memory. The intermediate results utilize about 600 gigabytes of storage.

Requirements

The code was developed using Python 3.9 on Ubuntu 21.04. Other systems and Python versions may work, but have not been tested.

Python library dependencies are specified in requirements.txt. Versions are pinned for reproducibility.

Installation

  • Optionally create and activate a virtual environment.
python3 -m venv env
source env/bin/activate
  • Install Python dependencies, specified in requirements.txt.
    • 2 minutes
pip3 install -r requirements.txt

Running the Code

By default, output is saved to the ./workspace directory, which is created automatically.

  • Train ResNet classification models.
    • 6 weeks
python3 src/train_nets.py
  • Evaluate the models, extracting representations from the corresponding data.
    • 1 hour
python3 src/eval_nets.py
  • Adversarially perturb test images, evaluating and extracting representations from the corresponding data.
    • 21 hours
python3 src/attack.py
  • Train and evaluate model-wise control adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from a single model.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_control.py
  • Train and evaluate model-wise treatment adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from multiple models.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_treatment.py
  • Train and evaluate unit-wise control adversarial instance detectors, varying the number of units used for generating features, where the units come from a single underlying model.
    • 1 hour
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_control.py
  • Train and evaluate unit-wise treatment adversarial instance detectors, varying the number of units used for generating features, where the units come from multiple underlying models.
    • 2 hours
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_treatment.py
  • Generate plots.
    • 2 seconds
python3 src/plot.py

Citation

@misc{steinberg2021measuring,
      title={Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances}, 
      author={Daniel Steinberg and Paul Munro},
      year={2021},
      eprint={2111.07035},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022