[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Overview

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Accepted as a spotlight paper at ICLR 2021.

Table of content

File structure

.
├── hw_nas_bench_api # HW-NAS-Bench API
│   ├── fbnet_models # FBNet's space
│   └── nas_201_models # NAS-Bench-201's space
│       ├── cell_infers
│       ├── cell_searchs
│       ├── config_utils
│       ├── shape_infers
│       └── shape_searchs
└── nas_201_api # NAS-Bench-201 API

Prerequisites

The code has the following dependencies:

  • python >= 3.6.10
  • pytorch >= 1.2.0
  • numpy >= 1.18.5

Preparation and download

No addtional file needs to be downloaded, our HW-NAS-Bench dataset has been included in this repository.

[Optional] If you want to use NAS-Bench-201 to access information about the architectures' accuracy and loss, please follow the NAS-Bench-201 guide, and download the NAS-Bench-201-v1_1-096897.pth.

How to use HW-NAS-Bench

More usage can be found in our jupyter notebook example

  1. Create an API instance from a file:
from hw_nas_bench_api import HWNASBenchAPI as HWAPI
hw_api = HWAPI("HW-NAS-Bench-v1_0.pickle", search_space="nasbench201")
  1. Show the real measured/estimated hardware-cost in different datasets:
# Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
for idx in range(3):
    for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
        HW_metrics = hw_api.query_by_index(idx, dataset)
        print("The HW_metrics (type: {}) for No.{} @ {} under NAS-Bench-201: {}".format(type(HW_metrics),

Corresponding printed information:

===> Example to get all the hardware metrics in the No.0,1,2 architectures under NAS-Bench-201's Space
The HW_metrics (type: <class 'dict'>) for No.0 @ cifar10 under NAS-Bench-201: {'edgegpu_latency': 5.807418537139893, 'edgegpu_energy': 24.226614330768584, 'raspi4_latency': 10.481976820010459, 'edgetpu_latency': 0.9571811309997429, 'pixel3_latency': 3.6058499999999998, 'eyeriss_latency': 3.645620000000001, 'eyeriss_energy': 0.6872827644999999, 'fpga_latency': 2.57296, 'fpga_energy': 18.01072}
...
  1. Show the real measured/estimated hardware-cost for a single architecture:
# Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
print("===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space")
HW_metrics = hw_api.query_by_index(0, "cifar10")
for k in HW_metrics:
    if "latency" in k:
        unit = "ms"
    else:
        unit = "mJ"
    print("{}: {} ({})".format(k, HW_metrics[k], unit))

Corresponding printed information:

===> Example to get use the hardware metrics in the No.0 architectures in CIFAR-10 under NAS-Bench-201's Space
edgegpu_latency: 5.807418537139893 (ms)
edgegpu_energy: 24.226614330768584 (mJ)
raspi4_latency: 10.481976820010459 (ms)
edgetpu_latency: 0.9571811309997429 (ms)
pixel3_latency: 3.6058499999999998 (ms)
eyeriss_latency: 3.645620000000001 (ms)
eyeriss_energy: 0.6872827644999999 (mJ)
fpga_latency: 2.57296 (ms)
fpga_energy: 18.01072 (mJ)
  1. Create the network from api:
# Create the network
config = hw_api.get_net_config(0, "cifar10")
print(config)
from hw_nas_bench_api.nas_201_models import get_cell_based_tiny_net
network = get_cell_based_tiny_net(config) # create the network from configurration
print(network) # show the structure of this architecture

Corresponding printed information:

{'name': 'infer.tiny', 'C': 16, 'N': 5, 'arch_str': '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'num_classes': 10}
TinyNetwork(
  TinyNetwork(C=16, N=5, L=17)
  (stem): Sequential(
    (0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (cells): ModuleList(
    (0): InferCell(
      info :: nodes=4, inC=16, outC=16, [1<-(I0-L0) | 2<-(I0-L1,I1-L2) | 3<-(I0-L3,I1-L4,I2-L5)], |avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|
      (layers): ModuleList(
        (0): POOLING(
          (op): AvgPool2d(kernel_size=3, stride=1, padding=1)
        )
        (1): ReLUConvBN(
...

Misc

Part of the devices used in HW-NAS-Bench:

Part of the devices used in HW-NAS-Bench

Acknowledgment

Owner
Efficient and Intelligent Computing Lab
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022