[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

Overview

MiVOS (CVPR 2021) - Mask Propagation

Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang

[arXiv] [Paper PDF] [Project Page] [Papers with Code]

Parkour Bike

This repo implements an improved version of the Space-Time Memory Network (STM) and is part of the accompanying code of Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion (MiVOS). It can be used as:

  1. A tool for propagating masks across video frames. Results
  2. An integral component for reproducing and/or improving the performance in MiVOS.
  3. A tool that can compute dense correspondences between two frames. Tutorial

Overall structure and capabilities

MiVOS Mask-Propagation Scribble-to-Mask
DAVIS/YouTube semi-supervised evaluation ✔️
DAVIS interactive evaluation ✔️
User interaction GUI tool ✔️
Dense Correspondences ✔️
Train propagation module ✔️
Train S2M (interaction) module ✔️
Train fusion module ✔️
Generate more synthetic data ✔️

Framework

framework

Requirements

We used these packages/versions in the development of this project. It is likely that higher versions of the same package will also work. This is not an exhaustive list -- other common python packages (e.g. pillow) are expected and not listed.

  • PyTorch 1.7.1
  • torchvision 0.8.2
  • OpenCV 4.2.0
  • progressbar
  • thinspline for training (pip install git+https://github.com/cheind/py-thin-plate-spline)
  • gitpython for training
  • gdown for downloading pretrained models

Refer to the official PyTorch guide for installing PyTorch/torchvision. The rest (except thin spline) can be installed by:

pip install progressbar2 opencv-python gitpython gdown

Main Results

Semi-supervised VOS

FPS is amortized, computed as total processing time / total number of frames irrespective of the number of objects, aka multi-object FPS. All times are measured on an RTX 2080 Ti with IO time excluded. Pre-computed results and evaluation outputs (either from local evaluation or CodaLab output log) are also provided. All evaluations are done in 480p resolution.

(Note: This implementation is not optimal in speed. There are ways to speed it up but we wanted to keep it in its simplest PyTorch form.)

Find all the precomputed results here.

DAVIS 2016 val:

Produced using eval_davis_2016.py

Model Top-k? J F J&F FPS Pre-computed results
Without BL pretraining 87.0 89.0 88.0 15.5 D16_s02_notop
Without BL pretraining ✔️ 89.7 92.1 90.9 16.9 D16_s02
With BL pretraining 87.8 90.0 88.9 15.5 D16_s012_notop
With BL pretraining ✔️ 89.7 92.4 91.0 16.9 D16_s012

DAVIS 2017 val:

Produced using eval_davis.py

Model Top-k? J F J&F FPS Pre-computed results
Without BL pretraining 78.8 84.2 81.5 9.75 D17_s02_notop
Without BL pretraining ✔️ 80.5 85.8 83.1 11.2 D17_s02
With BL pretraining 81.1 86.5 83.8 9.75 D17_s012_notop
With BL pretraining ✔️ 81.7 87.4 84.5 11.2 D17_s012

For YouTubeVOS val and DAVIS test-dev we also tried the kernelized memory (called KM in our code) technique described in Kernelized Memory Network for Video Object Segmentation. It works nicely with our top-k filtering.

YouTubeVOS val:

Produced using eval_youtube.py

Model Kernel Memory (KM)? J-Seen J-Unseen F-Seen F-Unseen Overall Score Pre-computed results
Full model with top-k 80.6 77.3 84.7 85.5 82.0 D17_testdev_s012
Full model with top-k ✔️ 81.6 77.7 85.8 85.9 82.8 D17_testdev_s012_km

DAVIS 2017 test-dev:

Produced using eval_davis.py

Model Kernel Memory (KM)? J F J&F Pre-computed results
Full model with top-k 72.7 80.2 76.5 YV_val_s012
Full model with top-k ✔️ 74.9 82.2 78.6 YV_val_s012_km

Running them yourselves

You can look at the corresponding scripts (eval_davis.py, eval_youtube.py, etc.). The arguments tooltip should give you a rough idea of how to use them. For example, if you have downloaded the datasets and pretrained models using our scripts, you only need to specify the output path: python eval_davis.py --output [somewhere] for DAVIS 2017 validation set evaluation.

Correspondences

The W matrix can be considered as a dense correspondence (affinity) matrix. This is in fact how we used it in the fusion module. See try_correspondence.py for details. We have included a small GUI there to show the correspondences (a point source is used, but a mask/tensor can be used in general).

Try it yourself: python try_correspondence.py.

Source Target
Source 1 Target 1
Source 2 Target 2
Source 3 Target 3

Pretrained models

Here we provide two pretrained models. One is pretrained on static images and transferred to main training (we call it s02: stage 0 -> stage 2); the other is pretrained on both static images and BL30K then transferred to main training (we call it s012). For the s02 model, we train it for 300K (instead of 150K) iterations in the main training stage to offset the extra training. More iterations do not help/help very little. The script download_model.py automatically downloads the s012 model. Put all pretrained models in Mask-Propagation/saves/.

Model Google Drive OneDrive
s02 link link
s012 link link

Training

Data preparation

I recommend either softlinking (ln -s) existing data or use the provided download_datasets.py to structure the datasets as our format. download_datasets.py might download more than what you need -- just comment out things that you don't like. The script does not download BL30K because it is huge (>600GB) and we don't want to crash your harddisks. See below.

├── BL30K
├── DAVIS
│   ├── 2016
│   │   ├── Annotations
│   │   └── ...
│   └── 2017
│       ├── test-dev
│       │   ├── Annotations
│       │   └── ...
│       └── trainval
│           ├── Annotations
│           └── ...
├── Mask-Propagation
├── static
│   ├── BIG_small
│   └── ...
└── YouTube
    ├── all_frames
    │   └── valid_all_frames
    ├── train
    ├── train_480p
    └── valid

BL30K

BL30K is a synthetic dataset rendered using ShapeNet data and Blender. For details, see MiVOS.

You can either use the automatic script download_bl30k.py or download it manually below. Note that each segment is about 115GB in size -- 700GB in total. You are going to need ~1TB of free disk space to run the script (including extraction buffer).

Google Drive is much faster in my experience. Your mileage might vary.

Manual download: [Google Drive] [OneDrive]

Training commands

CUDA_VISIBLE_DEVICES=[a,b] OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port [cccc] --nproc_per_node=2 train.py --id [defg] --stage [h]

We implemented training with Distributed Data Parallel (DDP) with two 11GB GPUs. Replace a, b with the GPU ids, cccc with an unused port number, defg with a unique experiment identifier, and h with the training stage (0/1/2).

The model is trained progressively with different stages (0: static images; 1: BL30K; 2: YouTubeVOS+DAVIS). After each stage finishes, we start the next stage by loading the trained weight.

One concrete example is:

Pre-training on static images: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0

Pre-training on the BL30K dataset: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s01 --load_network [path_to_trained_s0.pth] --stage 1

Main training: CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s012 --load_network [path_to_trained_s01.pth] --stage 2

Details

Files to look at

  • model/network.py - Defines the core network.
  • model/model.py - Training procedure.
  • util/hyper_para.py - Hyperparameters that you can provide by specifying command line arguments.

What are the differences?

While I did start building this from STM's official evaluation code, the official training code is not available and therefore a lot of details are missing. My own judgments are used in the engineering of this work.

  • We both use the ResNet-50 backbone up to layer3 but there are a few minor architecture differences elsewhere (e.g. decoder, mask generation in the last layer)
  • This repo does not use the COCO dataset and uses some other static image datasets instead.
  • This repo picks two, instead of three objects for each training sample.
  • Top-k filtering (proposed by us) is included here
  • Our raw performance (without BL30K or top-k) is slightly worse than the original STM model but I believe we train with fewer resources.

Citation

Please cite our paper if you find this repo useful!

@inproceedings{MiVOS_2021,
  title={Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion},
  author={Cheng, Ho Kei and Tai, Yu-Wing and Tang, Chi-Keung},
  booktitle={CVPR},
  year={2021}
}

Contact: [email protected]

Comments
  • About BL30K

    About BL30K

    作者您好,我将BL30K的6个压缩包全部下载好,并全部解压之后,在进行第二个阶段的预训练时报错是找不到data/dangjisheng/BL30K/a/BL30K/Annotations/kea03423/00020.png',不知道为什么?我是把6个文件压缩包全部下载好而且全部解压在一个目录下的,为什么会报错缺少文件?期待您的回复。

    image

    image

    opened by longmalongma 31
  • The server remained unresponsive for a long time when I try to train your model.

    The server remained unresponsive for a long time when I try to train your model.

    When I ran this line of code on our server, the server did not respond for a long time. Do you know why?

    UDA_VISIBLE_DEVICES=0 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=1 train.py --id retrain_s0 --stage 0 --batch_size 4

    opened by longmalongma 20
  • subprocess.CalledProcessError

    subprocess.CalledProcessError

    Hi, thanks for your great work! When I try to run CUDA_VISIBLE_DEVICES=0 OMP_NUM_THREADS=4 python -m torch.distrib uted.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s0 --stage 0 , I meet this problem, can you help me?

    File "/home/longma/anaconda2/envs/p3torchstm/lib/python3.6/site-packages/torch/distributed/launch.py", line 242, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/longma/anaconda2/envs/p3torchstm/bin/python', '-u', 'train.py', '--local_rank=1', '--id', 'retrain_s0', '--stage', '0']' returned non-zero exit status 1.

    opened by longmalongma 19
  • how to save the feature map of manymemory frames?

    how to save the feature map of manymemory frames?

    There is a part of your code that I don't understand. Should the memory frame be stored separately, or should the key-value feture map and the content feature map of the memory frame be connected together to save?Which line represents the memory frame saved?

    opened by longmalongma 10
  • Pre-training on the BL30K dataset after pre-training on static images

    Pre-training on the BL30K dataset after pre-training on static images

    As I see that in the pre-training on static images stage, the "single_object" in PropagationNetwork is True, so the MaskRGBEncoderSO is used. When I try to load the pre-trained of the above stage for the pre-training on the BL30K dataset or Main training, the "single_object" now is False and the model use MaskRGBEncoder instead. After that, the model can not load the model successfully. Here is the error: Traceback (most recent call last): File "train.py", line 68, in <module> total_iter = model.load_model(para['load_model']) File "/content/Mask-Propagation/model/model.py", line 180, in load_model self.PNet.module.load_state_dict(network) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1224, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for PropagationNetwork: size mismatch for mask_rgb_encoder.conv1.weight: copying a param with shape torch.Size([64, 4, 7, 7]) from checkpoint, the shape in current model is torch.Size([64, 5, 7, 7]).

    So can you explain how can we fix it? Thank you so much.

    opened by nero1342 9
  • RuntimeError: Error(s) in loading state_dict for PropagationNetwork

    RuntimeError: Error(s) in loading state_dict for PropagationNetwork

    Hello ! I want to train the PropagationNetwork on my personal image dataset, so I use the training command CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=4 python -m torch.distributed.launch --master_port 9842 --nproc_per_node=2 train.py --id retrain_s01 --load_network ./saves/propagation_model.pth --stage 0.(based on the pretrain model S012). It threw a runtime error.

    loadnetwork_error The training command works fine without the --load network parameters. Could you give me some suggestions?

    opened by xwhkkk 5
  • metrics results of test dataset

    metrics results of test dataset

    After I run the code eval_davis_2016.py, I only get the mask file in the output file. how could I get the value of metrics such as J, J&F? and how could we test the model on personal datasets to get those metrics after using interactive_gui.py? Thanks for your suggestions

    opened by xwhkkk 4
  • J&F performance on BL30K

    J&F performance on BL30K

    Hi, I am doing BL30K training for DAVIS 2017 val (including stage 0 and stage 1). I just want to know what J&F should I achieve on the DAVIS 2017 val after finishing BL30K training? Therefore, I can check whether my training is correct. I think it did not included in readme.

    opened by vateye 4
  • How to run two copies of your code at the same time?

    How to run two copies of your code at the same time?

    image

    I have duplicated two copies of your code and made small changes in the duplicated code respectively. When one is being trained, the other one cannot be trained. If the two codes are trained at the same time, what parameters need to be changed?One of my computers has 4 2080ti, the memory is enough.

    opened by longmalongma 4
  • Why don't you use top_k and km during the training phase?

    Why don't you use top_k and km during the training phase?

    Looking at your code I was a little confused why you didn't use top_k and km during the training phase. But top_k and km are used in the evaluation phase, right?Is it bad to use top_k and km in training?

    opened by longmalongma 4
  • RuntimeError: CUDA error: out of memory

    RuntimeError: CUDA error: out of memory

    How many GPUs do you need to test on Davis and YouTube?I keep reporting memory errors during my tests.I directly used the model trained by static pictures for VOS training, skipping the pre-training of BL30K. Is that OK?

    opened by longmalongma 4
Releases(1.0)
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022