Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

Related tags

Deep LearningT-DNA
Overview

T-DNA

Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation.

Our implementation is built on the source code from huggingface transformers.

Model

We aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating the multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs.

The overall architechture of T-DNA is shown in the figure below. image info

Requirements

Our code works with the following environment.

  • python=3.7.9
  • pytorch=1.4.0

To install the necessary packages for the project, please run: pip install -r requirements.txt.

Quick Start (For reproducing results)

  1. To do RoBERTa+T-DNA+FT, please refer to auto_FT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_FT.sh and get the expected results:
09/08/2021 19:56:58 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:56:58 - INFO - __main__ -     eval_loss = 0.4393280267715454
09/08/2021 19:56:58 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8889473684210526, 'f1': 0.8889374532466023, 'acc_and_f1': 0.8889424108338275}
  1. To do RoBERTa+T-DNA+TAPT, please refer to auto_TAPT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_TAPT.sh and get the expected results:
09/08/2021 19:47:03 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:47:03 - INFO - __main__ -     eval_loss = 0.48006332549609637
09/08/2021 19:47:03 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8943421052631579, 'f1': 0.8939718422143115, 'acc_and_f1': 0.8941569737387347}
  1. Important arguments:
    • task_name: ag, amazon, citation_intent, chemprot, hyperpartisan_news, imdb, rct-20k, sciie
    • data_dir: path of processed data
    • output_dir: path of saved results

Datasets

Following Gururangan et al. (2020), we conduct our experiments on eight classification tasks from four domains including biomedical sciences, computer scie nce, news and reviews. They are:

  • ChemProt: a manually annotated chemical–protein interaction dataset extracted from 5,031 abstracts for relation classification;
  • RCT: contains approximately 200,000 abstracts from public medicine with the role of each sentence clearly identified;
  • CitationIntent: contains around 2,000 citations annotated for their function;
  • SciERC: consists of 500 scientific abstracts annotated for relation classification;
  • HyperPartisan: which contains 645 articles from Hyperpartisan news with either extreme left-wing or right-wing stand-point used for partisanship classification;
  • AGNews: consists of 127,600 categorized articles from more than 2000 news source for topic classification;
  • Amazon: consists of 145,251 reviews on Women’s and Men’s Clothing & Accessories, each representing users’ implicit feedback on items with a binary label signifying whether the majority of customers found the review helpful;
  • IMDB: 50,000 balanced positive and negative reviews from the Internet Movie Database for sentiment classification

The datasets can be downloaded from the code associated with the Don't Stop Pretraining ACL 2020 paper. Please create a folder ./data in the root directory and put the downloaded datasets into it. After downloading, please convert them to *.tsv files referring to the script convert_dont_stop_corpus.py. Note that to create a low-resource setting, we constrain the size of all datasets into thousand-level. To do so, we randomly select a subset for RCT, AG, Amazon, IMDB with the ratio 1%, 1%, 1%, 10%, respectively.

To extract n-grams for datasets, please run pmi_ngram.py with the following parameters:

  • --dataset: the path of training data file
  • --output_dir: the path of output directory

Use with your own data

In this repo, we conducted experiments on eight classification tasks as described in the paper. In addition, it supports any classification task with just a little adjustment on your dataset. Here are the instructions to conduct experiments with your own data.

Firstly, please adjust your data format as following and put your data into the corresponding path.

Task adaptive pre-training:

Input dataset (./data/):

  • train: text \t label per line
  • dev: text \t label per line

Output: it will save the trained models to results folder automatically, and print out loss.

Fine-tuning dataset:

Input dataset (./data/tapt_data/):

  • train: text \t label per line
  • dev: text \t label per line
  • test: text \t label per line

Then, please modify the configuration file at ./TDNA/config.py

  1. define the desired evaluation metric in glue_compute_metrics(), e.g.,
elif task_name == "ag":
   return {"acc_and_f1": acc_and_f1(preds, labels)}
  1. create a new processor specifying the labels, e.g.,
class agProcessor(generalProcessor):
    def get_labels(self):
        return ['1', '2', '3', '4']
  1. specify the number of labels, e.g.,
glue_tasks_num_labels = {
    "citation_intent": 6,
    "ag": 4,
    "amazon": 2,
    "chemprot": 13,
    "hyperpartisan_news": 2,
    "imdb": 2,
    "rct-20k": 5,
    "sciie": 7,
    "SST2": 2
}
  1. include the new processor into glue_processors, e.g.,
glue_processors = {
    "citation_intent": citation_intentProcessor,
    "ag": agProcessor,
    "amazon": amazonProcessor,
    "chemprot": chemprotProcessor,
    "hyperpartisan_news": hyperpartisan_newsProcessor,
    "imdb": imdbProcessor,
    "rct-20k": rct_20kProcessor,
    "sciie": sciieProcessor,
    "SST2": SST2Processor
}
  1. specify the output mode in glue_output_modes, e.g.,
glue_output_modes = {
    "citation_intent": "classification",
    "ag": "classification",
    "amazon": "classification",
    "chemprot": "classification",
    "hyperpartisan_news": "classification",
    "imdb": "classification",
    "rct-20k": "classification",
    "sciie": "classification",
    "SST2": "classification"
}

Run

For FT,

python ./examples/run_classification.py --model_name_or_path roberta-base \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 4e-5 --num_train_epochs 3.0 --output_dir ./results/<task_name>_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt \
--fasttext_model_path ./ngram/<task_name>.npy --overwrite_output_dir

For TAPT + FT,

python ./examples/run_language_modeling.py \
--output_dir=./models/<task_name>_TAPT/ --model_type=roberta  --overwrite_output_dir \
--model_name_or_path=roberta-base --train_data_file=./data/tapt_data/<task_name>/train.tsv \
--eval_data_file=./data/tapt_data/<task_name>/dev.tsv --mlm --line_by_line \
--Ngram_path ./ngram/pmi_<task_name>_ngram.txt --num_train_epochs 10.0 \
--fasttext_model_path ./ngram/<task_name>.npy --learning_rate 4e-5

python ./examples/run_classification.py \
--model_name_or_path ./models/<task_name>_TAPT \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 2e-5 --num_train_epochs 5.0 --output_dir ./results/<task_name>_TAPT_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt --overwrite_output_dir --save_steps 5000

Output:

The run_classification.py program will save the trained models to results folder automatically, and print out loss, accuracy, f1 score. In addition, you can get the prediction results in args.output_dir/test_pred_{task_name}.txt. Take test_pred_ag.txt as an example:

input   label   pred
Unions representing workers at Turner   Newall say they are 'disappointed' after talks with stricken parent firm Federal Mogul. 3       3
SPACE.com - TORONTO, Canada -- A second\team of rocketeers competing for the  #36;10 million Ansari X Prize, a contest for\privately funded suborbital space flight, has officially announced the first\launch date for its manned rocket.      4       4
...

Contact information

For help or issues using T-DNA, please submit a GitHub issue.

For personal communication related to T-DNA, please contact Shizhe Diao ([email protected]).

Citation

If you use or extend our work, please cite the following paper:

@inproceedings{DXSJSZ2021,
    title = "Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation",
    author = "Diao, Shizhe  and
      Xu, Ruijia  and
      Su, Hongjin  and
      Jiang, Yilei  and
      Song, Yan  and
      Zhang, Tong",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.259",
    doi = "10.18653/v1/2021.acl-long.259",
    pages = "3336--3349",
}
Owner
shizhediao
shizhediao
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022