PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

Overview

PyTorch implementation of Video Transformer Benchmarks

This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a collections of scalable video transformer benchmarks, and discuss the training recipes of how to train a big video transformer model.

Now, we implement the TimeSformer and ViViT. And we have pre-trained the TimeSformer-B on Kinetics600, but still can't guarantee the performance reported in the paper. However, we find some relevant hyper-parameters which may help us to reach the target performance.

Table of Contents

  1. Difference
  2. TODO
  3. Setup
  4. Usage
  5. Result
  6. Acknowledge
  7. Contribution

Difference

In order to share the basic divided spatial-temporal attention module to different video transformer, we make some changes in the following apart.

1. Position embedding

We split the position embedding from R(nt*h*w×d) mentioned in the ViViT paper into R(nh*w×d) and R(nt×d) to stay the same as TimeSformer.

2. Class token

In order to make clear whether to add the class_token into the module forward computation, we only compute the interaction between class_token and query when the current layer is the last layer (except FFN) of each transformer block.

3. Initialize from the pre-trained model

  • Tokenization: the token embedding filter can be chosen either Conv2D or Conv3D, and the initializing weights of Conv3D filters from Conv2D can be replicated along temporal dimension and averaging them or initialized with zeros along the temporal positions except at the center t/2.
  • Temporal MSA module weights: one can choose to copy the weights from spatial MSA module or initialize all weights with zeros.
  • Initialize from the MAE pre-trained model provided by ZhiLiang, where the class_token that does not appear in the MAE pre-train model is initialized from truncated normal distribution.
  • Initialize from the ViT pre-trained model can be found here.

TODO

  • add more TimeSformer and ViViT variants pre-trained weights.
    • A larger version and other operation types.
  • add linear prob and partial fine-tune.
    • Make available to transfer the pre-trained model to downstream task.
  • add more scalable Video Transformer benchmarks.
    • We will also extend to multi-modality version, e.g Perceiver is coming soon.
  • add more diverse objective functions.
    • Pre-train on larger dataset through the dominated self-supervised methods, e.g Contrastive Learning and MAE.

Setup

pip install -r requirements.txt

Usage

Training

# path to Kinetics600 train set
TRAIN_DATA_PATH='/path/to/Kinetics600/train_list.txt'
# path to root directory
ROOT_DIR='/path/to/work_space'

python model_pretrain.py \
	-lr 0.005 \
	-pretrain 'vit' \
	-epoch 15 \
	-batch_size 8 \
	-num_class 600 \
	-frame_interval 32 \
	-root_dir ROOT_DIR \
	-train_data_path TRAIN_DATA_PATH

The minimal folder structure will look like as belows.

root_dir
├── pretrain_model
│   ├── pretrain_mae_vit_base_mask_0.75_400e.pth
│   ├── vit_base_patch16_224.pth
├── results
│   ├── experiment_tag
│   │   ├── ckpt
│   │   ├── log

Inference

# path to Kinetics600 pre-trained model
PRETRAIN_PATH='/path/to/pre-trained model'
# path to the test video sample
VIDEO_PATH='/path/to/video sample'

python model_inference.py \
	-pretrain PRETRAIN_PATH \
	-video_path VIDEO_PATH \
	-num_frames 8 \
	-frame_interval 32 \

Result

Kinetics-600

1. Model Zoo

name pretrain epochs num frames spatial crop top1_acc top5_acc weight log
TimeSformer-B ImageNet-21K 15e 8 224 78.4 93.6 Google drive or BaiduYun(code: yr4j) log

2. Train Recipe(ablation study)

2.1 Acc

operation top1_acc top5_acc top1_acc (three crop)
base 68.2 87.6 -
+ frame_interval 4 -> 16 (span more time) 72.9(+4.7) 91.0(+3.4) -
+ RandomCrop, flip (overcome overfit) 75.7(+2.8) 92.5(+1.5) -
+ batch size 16 -> 8 (more iterations) 75.8(+0.1) 92.4(-0.1) -
+ frame_interval 16 -> 24 (span more time) 77.7(+1.9) 93.3(+0.9) 78.4
+ frame_interval 24 -> 32 (span more time) 78.4(+0.7) 94.0(+0.7) 79.1

tips: frame_interval and data augment counts for the validation accuracy.


2.2 Time

operation epoch_time
base (start with DDP) 9h+
+ speed up training recipes 1h+
+ switch from get_batch first to sample_Indice first 0.5h
+ batch size 16 -> 8 33.32m
+ num_workers 8 -> 4 35.52m
+ frame_interval 16 -> 24 44.35m

tips: Improve the frame_interval will drop a lot on time performance.

1.speed up training recipes:

  • More GPU device.
  • pin_memory=True.
  • Avoid CPU->GPU Device transfer (such as .item(), .numpy(), .cpu() operations on tensor or log to disk).

2.get_batch first means that we firstly read all frames through the video reader, and then get the target slice of frames, so it largely slow down the data-loading speed.


Acknowledge

this repo is built on top of Pytorch-Lightning, decord and kornia. I also learn many code designs from MMaction2. I thank the authors for releasing their code.

Contribution

I look forward to seeing one can provide some ideas about the repo, please feel free to report it in the issue, or even better, submit a pull request.

And your star is my motivation, thank u~

Owner
Xin Ma
Xin Ma
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022