PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

Overview

PyGRANSO

PyGRANSO

PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

Please check https://ncvx.org/PyGRANSO for detailed instructions (introduction, installation, settings, examples...).

PyGRANSO is AGPL v3.0 licensed, but it also contains a small portion of GPL code. Please see the LICENSE_INFO folder for more information.

Brief Introduction

Optimizing nonconvex (NCVX) problems, especially nonsmooth and constrained ones, is an essential part of machine learning. However, it can be hard to reliably solve such problems without optimization expertise. Existing general-purpose NCVX optimization packages are powerful but typically cannot handle nonsmoothness. GRANSO is among the first optimization solvers targeting general nonsmooth NCVX problems with nonsmooth constraints, but, as it is implemented in MATLAB and requires the user to provide analytical gradients, GRANSO is often not a convenient choice in machine learning (especially deep learning) applications. To greatly lower the technical barrier, we introduce a new software package called NCVX, whose initial release contains the solver PyGRANSO, a PyTorch-enabled port of GRANSO incorporating auto-differentiation, GPU acceleration, tensor input, and support for new QP solvers. NCVX is built on freely available and widely used open-source frameworks, and as a highlight, can solve general constrained deep learning problems, the first of its kind.

Installation

NOTE: The installation process is tested on Ubuntu 20.04

Installing PyGRANSO is simple. Here is a step-by-step instruction:

  1. Install Python >= 3.9

  2. Get the most recent PyGRANSO package (including examples and requirements file):

     git clone https://github.com/sun-umn/PyGRANSO.git
     cd PyGRANSO
    
  3. Install PyGRANSO solver from PyPI:

    pip install pygranso==1.0.0.dev2
    
  4. Install Dependencies from PyPI:

    OS: Linux OR Windows; Compute Platform: CUDA:

     pip install -r requirements.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
    

    OS: Linux; Compute Platform: CPU:

     pip install -r requirements_linux_cpu.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
    

    OS: Mac OR Windows; Compute Platform: CPU:

     pip install -r requirements_cpu.txt
    
  5. (CUDA) Run test to make sure the dependency installation is correct:

     python test_cuda.py
    

    (CPU) Run test to make sure the dependency installation is correct:

     python test_cpu.py
    
  6. Check the example folder in the source code or example section on the documentation website to get started.

Dependencies

Python-3.9.7

numpy-1.20.3

scipy-1.7.1

pytorch-1.9.0

osqp-0.6.2

Jupyter Notebook-6.4.5

Change Logs

Please check CHANGELOG.md in the main folder.

Notes on Documentation

PyGRANSO is a PyTorch-enabled port of GRANSO with auto-differentiation, and some of its documentation uses MATLAB conventions. In the PyGRANSO source code docstrings, please note that:

  • struct refers to pygransoStruct, which is a simple class that users need to use for specifying their problems and options.
  • Vector and matrix refer to PyTorch tensor with (n,1) and (m,n) dimension, respectively.

Acknowledgements

We would like to thank Frank E. Curtis and Michael L. Overton for their involvement in creating the BFGS-SQP algorithm that is implemented in the software package GRANSO. This work was supported by UMII Seed Grant Program and NSF CMMI 2038403.

Citation

If you publish work that uses or refers to PyGRANSO, please cite the following two papers, which respectively introduced PyGRANSO and GRANSO:

[1] Buyun Liang, Tim Mitchell, and Ju Sun, NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning, arXiv preprint arXiv:2111.13984 (2021). Available at https://arxiv.org/abs/2111.13984

[2] Frank E. Curtis, Tim Mitchell, and Michael L. Overton, A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles, Optimization Methods and Software, 32(1):148-181, 2017. Available at https://dx.doi.org/10.1080/10556788.2016.1208749

BibTex:

@article{liang2021ncvx,
    title={{NCVX}: {A} User-Friendly and Scalable Package for Nonconvex 
    Optimization in Machine Learning}, 
    author={Buyun Liang, Tim Mitchell, and Ju Sun},
    year={2021},
    eprint={2111.13984},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

@article{curtis2017bfgssqp,
    title={A {BFGS-SQP} method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles},
    author={Frank E. Curtis, Tim Mitchell, and Michael L. Overton},
    journal={Optimization Methods and Software},
    volume={32},
    number={1},
    pages={148--181},
    year={2017},
    publisher={Taylor \& Francis}
}

Contact

For questions or bug reports, please either:

  • raise issues in the PyGRANSO repository (https://github.com/sun-umn/PyGRANSO/) or
  • send an email to:
    • Buyun Liang (liang664 an_at_symbol umn a_dot_symbol edu)
    • Tim Mitchell (tim an_at_symbol timmitchell a_dot_symbol com)
    • Ju Sun (jusun an_at_symbol umn a_dot_symbol edu)

Thanks to other contributors and bug reporters:

Chen Jiang: Tested perceptual attack example (ex6). Tested PyGRANSO on Win10. Debug updatePenaltyParameter function.

Comments
  • Eigenvalue opt example

    Eigenvalue opt example

    Need to change:

    • [x] \lambda to \Lambda (lowercase to uppercase) (Typically, \Lambda uppercase denotes the spectrum, while \lambda lowercase denotes an eigenvalue.)
    • [x] "$\lambda(\cdot)$ is the eigenvalue of $\cdot$," to "$\Lambda(\cdot)$ is the spectrum of a square matrix,"
    • [x] "$\alpha$ is the maximum real part of eigenvalues of $M$." to "$\alpha(\cdot)$ is the spectral abscissa of a square matrix, i.e., the maximum real part of its eigenvalues."
    • [x] For imaginary part, \Im, in papers, I generally redefine this from the standard symbol to just "Im", e.g., "Im(A+BXC)", as I think this is usually much clearer. But this is a debatable suggestion.
    opened by t-mitchell 13
  • Posting announcement for PyGRANSO

    Posting announcement for PyGRANSO

    Machine Learning News: https://groups.google.com/g/ml-news

    SIAM: https://www.siam.org/membership/activity-groups/detail/computational-science-and-engineering https://www.siam.org/membership/activity-groups/detail/data-science https://www.siam.org/membership/activity-groups/detail/imaging-science https://www.siam.org/membership/activity-groups/detail/optimization

    opened by Buyun-Liang 11
  • Discussion: code and algorithms

    Discussion: code and algorithms

    General things:

    • [x] #13
    • [x] #20
    • [x] What is the deal with X_struct and the separation of variables as opposed to just an input vector?
    • [x] #14

    Gradient stuff:

    • [x] Does the AD enabling have to happen in comb_fn that the user provides?
    • [x] #15
    • [x] Is adding support for the user to choose between explicit and AD gradients useful? Might be a bit of work to support this though!

    Line search stuff

    • [x] What is the deal with disabling code 6 termination and how is the BFGS update then ensured to not lose positive definiteness?
    • [x] What is the deal with the backtracking line search? Same issue with positive definiteness and this may not work well for nonsmooth problems. The GRANSO line search is a key component of the BFGS-SQP algorithm.
    • [x] #16
    Code TODO 
    opened by t-mitchell 8
  • update license and copyright

    update license and copyright

    I went through the private folder and saw that we have four different types of files to update. I did some sample updates so you (a) can review to see if you agree and like my changes and (b) have templates to work from. The types are:

    1. direct port from GRANSO (see bfgsDamping.py)
    2. direct port from URTM / GRANSO (see isAnInteger.py)
    3. port from GRANSO with changes (see linesearchWeakWolfe.py)
    4. entirely new file and code (see getCiGradVec.py)

    Note that I added a GPL header block linesearchWeakWolfe.py (and bfgsHessianInverse.py) as these individual routines were derived from HANSO which is GPL. But don't add this headers to any other files.

    Overall, I tried to make things as compact as possible and only use one AGPL license block. I also eliminated some lines I thought were unnecessary or would be annoying to continually update for future releases. For example, maintaining version numbers in every file is tedious work, so I only put version numbers in the main user-facing routines, i.e., granso, gransoOptions, and gransoOptionsAdvanced.

    p.s. Let me know what you think and if you have suggestions! I definitely went back and forth on how to clearly do all of this.

    opened by t-mitchell 6
  • authors file

    authors file

    Regarding AUTHORS.md:

    1. Do you think we need or want such a detailed file? I was thinking we just I wrote GRANSO and you ported it to Python and added PyTorch support and more example.
    2. I wasn't sure how you determined the file groups, as they look different from what I see marked as direct port or not in the private folder.
    opened by t-mitchell 4
  • docstring indentation

    docstring indentation

    Probably we should remove a level of indentation in the docstring for each file, since as is, we have double the normal amount of indentation. Obviously, this is a super minor point and not critical.

    opened by t-mitchell 4
  • Regarding dummy class in `pygransoStruct.py`

    Regarding dummy class in `pygransoStruct.py`

    I'm going to replace in the dummy class with dict for the v1.0.0 release.

    How should I define the dict for the opts so that the values in dict can have different data type?

    Code TODO 
    opened by Buyun-Liang 3
  • "Please see the notes for the data structures used in PyGRANSO"?

    What does "Please see the notes for the data structures used in PyGRANSO" refer to? Is it another document somewhere? Or is this self-referential, i.e., referring to the "Notes on Documentation" section in the readme that this phrase appears in?

    question 
    opened by t-mitchell 2
  • Examples Updated

    Examples Updated

    I just updated all examples in the ./example folder. Maybe we can find a time to carefully review the README.md tomorrow

    Please let me know if there is any other thing to be updated in the source code before the initial public release.

    opened by Buyun-Liang 2
  • TODO in JMLR manuscript

    TODO in JMLR manuscript

    1. "zero dependency on proprietary packages": we should discuss this since GRANSO doesn't really have this because it could be run using OCTAVE
    2. Role of the NCVX name in the PyGRANSO package. NCVX and PyGRANSO in the JMLR paper
    Paper TODO 
    opened by Buyun-Liang 2
  • Discussion: naming and titles

    Discussion: naming and titles

    • [x] #9

    • [x] #10 optimization in machine learning" be for NCVX or PyGRANSO?

    • [x] Relatedly, is the title of the paper going to change?

    • [x] #12

    Depending on the answers to these questions, we'll need to change the docstrings in all the files.

    opened by t-mitchell 2
  • Minor bug in qpTerminationCondition.py#L226

    Minor bug in qpTerminationCondition.py#L226

    https://github.com/sun-umn/PyGRANSO/blob/main/pygranso/private/qpTerminationCondition.py#L226

    Use Hreg = torch.tensor(V) @ torch.diag(dvec) @ torch.tensor(V).T instead

    opened by Buyun-Liang 0
  • TODO in future release

    TODO in future release

    1. For avoiding unnecessary AD gradients, the GRANSO line search could be modified so that the AD gradient is only computed on demand, i.e., only compute the gradient when sufficient decrease holds

    2. Adding the MPI parallel full BFGS Python code Tim has

    Future Release 
    opened by Buyun-Liang 2
Releases(v1.2.0)
  • v1.2.0(Jul 27, 2022)

    Version: 1.2.0 --- 2022-07-26

    Description: major fixes and improvements on LBFGS.

    Fixed

    • Reducing memory usage for LBFGS. Now PyGRANSO can solve problem with ~15k parameters by using 14 GB memory.
    • Update example: ortho RNN with max folding and orthonormal initialization.
    • Allow high precision for QP solver.
    • Allow part of optimization variables not showing up in objective (see SVM example).
    • Fixed Code 12: terminated with steering failure.
    • Fixed stationary failure: try different stationarity calculation, or set stationarity measure to be inf if encounter numerical issue

    Added

    • Reorganize and add examples: perceptual/lp norm attack on ImageNet images. trace optimization with orthogonal constraints; unconstrained deep learning with LeNet5; logistic regression.
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Feb 20, 2022)

    Version: 1.1.0 --- 2022-02-20

    Description: major fixes and improvements.

    Fixed

    • Avoid gradient accumulating in deep learning problem;
    • Prevent memory leak problem when using torch tensor. See ex6 perceptual attack.

    Changed

    • Update format of user-defined variables when using pygranso interface.

    Packaging

    • Publish pygranso package on Pypi.

    Added

    • Add examples: ex 10 dictionary learning with torch.nn module; ex 11 orthogonal recurrent neural networks.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Dec 31, 2021)

    Description: initial public release of PyGRANSO.

    Main features: auto-differentiation, GPU acceleration, tensor input, scalable QP solver, and zero dependency on proprietary packages. Multiple new examples added.

    Source code(tar.gz)
    Source code(zip)
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Bytedance Inc. 2.5k Jan 06, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022