Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Overview

Swin-Transformer

Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, please refer to "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"

This repo is an implementation of MegEngine version Swin-Transformer. This is also a showcase for training on GPU with less memory by leveraging MegEngine DTR technique.

There is also an official PyTorch implementation.

Usage

Install

  • Clone this repo:
git clone https://github.com/MegEngine/swin-transformer.git
cd swin-transformer
  • Install megengine==1.6.0
pip3 install megengine==1.6.0 -f https://megengine.org.cn/whl/mge.html

Training

To train a Swin Transformer using random data, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> train_random.py

To train a Swin Transformer using AMP (Auto Mix Precision), run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --mode mp train_random.py

To train a Swin Transformer using DTR in dynamic graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --dtr [--dtr-thd <eviction-threshold-of-dtr>] train_random.py

To train a Swin Transformer using DTR in static graph mode, run:

python3 -n <num-of-gpus-to-use> -b <batch-size-per-gpu> -s <num-of-train-steps> --trace --symbolic --dtr --dtr-thd <eviction-threshold-of-dtr> train_random.py

For example, to train a Swin Transformer with a single GPU using DTR in static graph mode with threshold=8GB and AMP, run:

python3 -n 1 -b 340 -s 10 --trace --symbolic --dtr --dtr-thd 8 --mode mp train_random.py

For more usage, run:

python3 train_random.py -h

Benchmark

  • Testing Devices
    • 2080Ti @ cuda-10.1-cudnn-v7.6.3-TensorRT-5.1.5.0 @ Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
    • Reserve all CUDA memory by setting MGB_CUDA_RESERVE_MEMORY=1, in order to alleviate memory fragmentation problem
Settings Maximum Batch Size Speed(s/step) Throughput(images/s)
None 68 0.490 139
AMP 100 0.494 202
DTR in static graph mode 300 2.592 116
DTR in static graph mode + AMP 340 1.944 175

Acknowledgement

We are inspired by the Swin-Transformer repository, many thanks to microsoft!

Owner
旷视天元 MegEngine
旷视天元 MegEngine
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022