Automatically creates genre collections for your Plex media

Overview

Plex Auto Genres

Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre specific content

  1. Requirements
  2. Optimal Setup
  3. Getting Started
  4. Automating
  5. Docker Usage
  6. Troubleshooting
Movies example (with cover art set using --set-posters flag.)

Movie Collections

Anime example

Anime Collections

Requirements

  1. Python 3 - Instructions > Windows / Mac / Linux (Not required if using Docker)
  2. TMDB Api Key (Only required for non-anime libraries)

Optimal Setup

  1. Anime / Anime Movies are in their own library on your plex server. (Anime and Anime Movies can share the same library)
  2. Standard TV Shows are in their own library on your plex server.
  3. Standard Movies are in their own library on your plex server.
  4. Proper titles for your media, this makes it easier to find the media. (see https://support.plex.tv/articles/naming-and-organizing-your-tv-show-files/)

For this to work well your plex library should be sorted. Meaning standard and non-standard media should not be in the same Plex library. Anime is an example of non-standard media.

If your anime shows and standard tv shows are in the same library, you can still use this script just choose (standard) as the type. However, doing this could cause incorrect genres added to some or all of your anime media entries.

Here is an example of my plex library setup

Plex Library Example

Getting Started

  1. Read the Optimal Setup section above
  2. Run python3 -m pip install -r requirements.txt to install the required dependencies.
  3. Rename the .env.example file to .env
  4. Rename the config/config.json.example file to config/config.json. The default settings are probably fine.
  5. Edit the .env file and set your plex username, password, and server name. If you are generating collections for standard media (non anime) you will need to also obtain an TMDB Api Key (for movies and tv shows)
    Variable Authentication method Value
    PLEX_USERNAME Username and password Your Plex Username
    PLEX_PASSWORD Username and password Your Plex Password
    PLEX_SERVER_NAME Username and password Your Plex Server Name
    PLEX_BASE_URL Token Your Plex Server base URL
    PLEX_TOKEN Token Your Plex Token
    PLEX_COLLECTION_PREFIX (Optional) Prefix for the created Plex collections. For example, with a value of "*", a collection named "Adventure", the name would instead be "*Adventure".

    Default value : ""
    TMDB_API_KEY Your TMDB api key (not required for anime library tagging)
  6. Optional, If you want to update the poster art of your collections. See posters/README.md

You are now ready to run the script

usage: plex-auto-genres.py [-h] [--library LIBRARY] [--type {anime,standard-movie,standard-tv}] [--set-posters] [--sort] [--rate-anime]
                           [--create-rating-collections] [--query QUERY [QUERY ...]] [--dry] [--no-progress] [-f] [-y]

Adds genre tags (collections) to your Plex media.

optional arguments:
  -h, --help            show this help message and exit
  --library LIBRARY     The exact name of the Plex library to generate genre collections for.
  --type {anime,standard-movie,standard-tv}
                        The type of media contained in the library
  --set-posters         uploads posters located in posters/<type> of matching collections. Supports (.PNG)
  --sort                sort collections by adding the sort prefix character to the collection sort title
  --rate-anime          update media ratings with MyAnimeList ratings
  --create-rating-collections
                        sorts media into collections based off rating
  --query QUERY [QUERY ...]
                        Looks up genre and match info for the given media title.
  --dry                 Do not modify plex collections (debugging feature)
  --no-progress         Do not display the live updating progress bar
  -f, --force           Force proccess on all media (independently of proggress recorded in logs/).
  -y, --yes

examples: 
python plex-auto-genres.py --library "Anime Movies" --type anime
python plex-auto-genres.py --library "Anime Shows" --type anime
python plex-auto-genres.py --library Movies --type standard-movie
python plex-auto-genres.py --library "TV Shows" --type standard-tv

python plex-auto-genres.py --library Movies --type standard-movie --set-posters
python plex-auto-genres.py --library Movies --type standard-movie --sort
python plex-auto-genres.py --library Movies --type standard-movie --create-rating-collections

python plex-auto-genres.py --type anime --query chihayafuru
python plex-auto-genres.py --type standard-movie --query Thor Ragnarok

Example Usage

Automating

I have conveniently included a script to help with automating the process of running plex-auto-genres when combined with any number of cron scheduling tools such as crontab, windows task scheduler, etc.

If you have experience with Docker I reccommend using my docker image which will run on a schedule.

  1. Copy .env.example to .env and update the values
  2. Copy config.json.example to config.json and update the values
  3. Each entry in the run list will be executed when you run this script
  4. Have some cron/scheduling process execute python3 automate.py, I suggest running it manually first to test that its working.

Note: The first run of this script may take a long time (minutes to hours) depending on your library sizes.

Note: Don't be alarmed if you do not see any text output. The terminal output you normally see when running plex-auto-genres.py is redirected to the log file after each executed run in your config.

Docker Usage

  1. Install Docker
  2. Install Docker Compose
  3. Clone or Download this repository
  4. Edit docker/docker-compose.yml
    1. Update the volumes: paths to point to the config,logs,posters directories in this repo.
    2. Update the environment: variables. See Getting Started.
  5. Copy config/config.json.example to config/config.json
    1. Edit the run array examples to match your needs. When the script runs, each library entry in this array will be updated on your Plex server.
  6. Run docker-compose up -d, the script will run immediately then proceed to run on a schedule every night at 1am UTC. Logs will be located at logs/plex-auto-genres-automate.log

Another Docker option of this tool can be found here.

Troubleshooting

  1. If you are not seeing any new collections close your plex client and re-open it.
  2. Delete the generated plex-*-successful.txt and plex-*-failures.txt files if you want the script to generate collections from the beginning. You may want to do this if you delete your collections and need them re-created.
  3. Having the release year in the title of a tv show or movie can cause the lookup to fail in some instances. For example Battlestar Galactica (2003) will fail, but Battlestar Galactica will not.
Owner
Shane Israel
Shane Israel
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022