Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Overview

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

This repository is the official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

Sungyong Seo*, Chuizheng Meng*, Yan Liu, Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics, ICLR 2020.

Data

Download the requried data.zip from Google Drive. Then,

cd /path/to/the/root/of/project
mkdir data
mv /path/to/data.zip ./data/
cd data
unzip data.zip

Environment

Docker (Recommended!)

First follow the official documents of Docker and nvidia-docker to install docker with CUDA support.

Use the following commands to build a docker image containing all necessary packages:

cd docker
bash build_docker.sh

This script will also copy the jupyter_notebook_config.py, which is the configuration file of Jupyter Notebook, into the docker image. The default password for Jupyter Notebook is 12345.

Use the following script to create a container from the built image:

bash rundocker-melady.sh

If the project directory is not under your home directory, modify rundocker-melady.sh to change the file mapping.

Manual Installation

# install python packages
pip install pyyaml tensorboardX geopy networkx tqdm
conda install pytorch==1.1.0 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
conda install -y matplotlib scipy pandas jupyter scikit-learn geopandas
conda install -y -c conda-forge jupyterlab igl meshplot

# install pytorch_geometric
export PATH=/usr/local/cuda/bin:$PATH
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
pip install --verbose --no-cache-dir torch-scatter==1.2.0
pip install --verbose --no-cache-dir torch-sparse==0.4.0
pip install --verbose --no-cache-dir torch-cluster==1.3.0
pip install --verbose --no-cache-dir torch-spline-conv==1.1.0
pip install torch-geometric==1.1.2

# specify numpy==1.16.2 to avoid loading error (>=1.16.3 may require allow_pickle=True in np.load)
pip install -I numpy==1.16.2 

Run

Experiments in Section 3.1 "Approximation of Directional Derivatives"

See the Jupyter Notebook approx-gradient/synthetic-gradient-approximation.ipynb for details.

Experiments in Section 3.2 "Graph Signal Prediction" and Section 4 "Prediction: Graph Signals on Land-based Weather Stations"

cd scripts
python train.py --extconf /path/to/exp/config/file --mode train --device cuda:0

Examples:

  • PA-DGN, Graph Signal Prediction of Synthetic Data
cd scripts
python train.py --extconf ../confs/iclrexps/irregular_varicoef_diff_conv_eqn_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Prediction of Graph Signals on Land-based Weather Stations
cd scripts
python train.py --extconf ../confs/iclrexps/noaa_pt_states_withloc/GraphPDE_GN_RGN_16_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Sea Surface Temperature (SST) Prediction
cd scripts
python train.py --extconf ../confs/iclrexps/sst-daily_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0

Summary of Results

You can use results/print_results.ipynb to print tables of experiment results, including the mean value and the standard error of mean absolution error (MAE) of prediction tasks.

Reference

@inproceedings{seo*2020physicsaware,
title={Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics},
author={Sungyong Seo* and Chuizheng Meng* and Yan Liu},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=r1gelyrtwH}
}
Owner
USC-Melady
USC-Melady
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023