Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Overview

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

This repository is the official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics

Sungyong Seo*, Chuizheng Meng*, Yan Liu, Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics, ICLR 2020.

Data

Download the requried data.zip from Google Drive. Then,

cd /path/to/the/root/of/project
mkdir data
mv /path/to/data.zip ./data/
cd data
unzip data.zip

Environment

Docker (Recommended!)

First follow the official documents of Docker and nvidia-docker to install docker with CUDA support.

Use the following commands to build a docker image containing all necessary packages:

cd docker
bash build_docker.sh

This script will also copy the jupyter_notebook_config.py, which is the configuration file of Jupyter Notebook, into the docker image. The default password for Jupyter Notebook is 12345.

Use the following script to create a container from the built image:

bash rundocker-melady.sh

If the project directory is not under your home directory, modify rundocker-melady.sh to change the file mapping.

Manual Installation

# install python packages
pip install pyyaml tensorboardX geopy networkx tqdm
conda install pytorch==1.1.0 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch
conda install -y matplotlib scipy pandas jupyter scikit-learn geopandas
conda install -y -c conda-forge jupyterlab igl meshplot

# install pytorch_geometric
export PATH=/usr/local/cuda/bin:$PATH
export CPATH=/usr/local/cuda/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
pip install --verbose --no-cache-dir torch-scatter==1.2.0
pip install --verbose --no-cache-dir torch-sparse==0.4.0
pip install --verbose --no-cache-dir torch-cluster==1.3.0
pip install --verbose --no-cache-dir torch-spline-conv==1.1.0
pip install torch-geometric==1.1.2

# specify numpy==1.16.2 to avoid loading error (>=1.16.3 may require allow_pickle=True in np.load)
pip install -I numpy==1.16.2 

Run

Experiments in Section 3.1 "Approximation of Directional Derivatives"

See the Jupyter Notebook approx-gradient/synthetic-gradient-approximation.ipynb for details.

Experiments in Section 3.2 "Graph Signal Prediction" and Section 4 "Prediction: Graph Signals on Land-based Weather Stations"

cd scripts
python train.py --extconf /path/to/exp/config/file --mode train --device cuda:0

Examples:

  • PA-DGN, Graph Signal Prediction of Synthetic Data
cd scripts
python train.py --extconf ../confs/iclrexps/irregular_varicoef_diff_conv_eqn_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Prediction of Graph Signals on Land-based Weather Stations
cd scripts
python train.py --extconf ../confs/iclrexps/noaa_pt_states_withloc/GraphPDE_GN_RGN_16_notshared_4nn/conf.yaml --mode train --device cuda:0
  • PA-DGN, Sea Surface Temperature (SST) Prediction
cd scripts
python train.py --extconf ../confs/iclrexps/sst-daily_4nn_42_250sample/GraphPDE_GN_sum_notshared_4nn/conf.yaml --mode train --device cuda:0

Summary of Results

You can use results/print_results.ipynb to print tables of experiment results, including the mean value and the standard error of mean absolution error (MAE) of prediction tasks.

Reference

@inproceedings{seo*2020physicsaware,
title={Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics},
author={Sungyong Seo* and Chuizheng Meng* and Yan Liu},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=r1gelyrtwH}
}
Owner
USC-Melady
USC-Melady
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022