Create time-series datacubes for supervised machine learning with ICEYE SAR images.

Related tags

Deep Learningicecube
Overview

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates multidimensional SAR image and labeled data arrays.

The datacubes stack SAR time-series images in range and azimuth and can preserve the geospatial content, intensity, and complex SAR signal from the ICEYE SAR images. You can use the datacubes with ICEYE Ground Range Detected (GRD) geotifs and ICEYE Single Look Complex (SLC) .hdf5 product formats.

alt text

This work is sponsored by ESA Φ-lab as part of the AI4SAR initiative.


Getting Started

You need Python 3.8 or later to use the ICEcube library.

The installation options depend on whether you want to use the library in your Python scripts or you want to contribute to it. For more information, see Installation.


ICEcube Examples

To test the Jupyter notebooks and for information on how to use the library, see the ICEcube Documentation.


AI4SAR Project Updates

For the latest project updates, see SAR for AI Development.

Comments
  • 'RPC' does not exist

    'RPC' does not exist

    Trying to read an SLC .h5 downloaded from ICEYE archive (id 10499) and get 'RPC does not exist':

    cube_config = CubeConfig()
    slc_datacube = SLCDatacube.build(cube_config, '/Users/sstrong/bin/test_data_icecube/slcs')
    
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    /var/folders/7r/fyfh8zx51ls6yt8t_jppnz3c0000gq/T/ipykernel_11546/2087236712.py in <module>
          1 cube_config = CubeConfig()
    ----> 2 slc_datacube = SLCDatacube.build(cube_config, '/Users/sstrong/bin/test_data_icecube/slcs')
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/slc_datacube.py in build(cls, cube_config, raster_dir)
         52     def build(cls, cube_config: CubeConfig, raster_dir: str) -> SARDatacube:
         53         slc_datacube = SLCDatacube(cube_config, RASTER_DTYPE)
    ---> 54         ds = slc_datacube.create(cls.PRODUCT_TYPE, raster_dir)
         55         slc_datacube.xrdataset = ds
         56         return slc_datacube
    
    ~/Documents/github/icecube/icecube/utils/common_utils.py in time_it(*args, **kwargs)
        111     def time_it(*args, **kwargs):
        112         time_started = time.time()
    --> 113         return_value = func(*args, **kwargs)
        114         time_elapsed = time.time()
        115         logger.info(
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube.py in create(self, product_type, raster_dir)
         43         """
         44         metadata_object = SARDatacubeMetadata(self.cube_config)
    ---> 45         metadata_object = metadata_object.compute_metdatadf_from_folder(
         46             raster_dir, product_type
         47         )
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube_metadata.py in compute_metdatadf_from_folder(self, raster_dir, product_type)
        116         )
        117 
    --> 118         self.metadata_df = self._crawl_metadata(raster_dir, product_type)
        119         logger.debug(f"length metadata from the directory {len(self.metadata_df)}")
        120 
    
    ~/Documents/github/icecube/icecube/bin/sar_cube/sar_datacube_metadata.py in _crawl_metadata(self, raster_dir, product_type)
         68 
         69     def _crawl_metadata(self, raster_dir, product_type):
    ---> 70         return metadata_crawler(
         71             raster_dir,
         72             product_type,
    
    ~/Documents/github/icecube/icecube/utils/metadata_crawler.py in metadata_crawler(raster_dir, product_type, variables, recursive)
         36     _, raster_paths = DirUtils.get_dir_files(raster_dir, fext=fext)
         37 
    ---> 38     return metadata_crawler_list(raster_paths, variables)
         39 
         40 
    
    ~/Documents/github/icecube/icecube/utils/metadata_crawler.py in metadata_crawler_list(raster_paths, variables)
         43 
         44     for indx, raster_path in enumerate(raster_paths):
    ---> 45         metadata = IO.load_ICEYE_metadata(raster_path)
         46         parsed_metadata = _parse_data_row(metadata, variables)
         47         parsed_metadata["product_fpath"] = raster_path
    
    ~/Documents/github/icecube/icecube/utils/analytics_IO.py in load_ICEYE_metadata(path)
        432         are converted from bytedata and read into the dict for compatability reasons.
        433         """
    --> 434         return read_SLC_metadata(h5py.File(path, "r"))
        435 
        436     elif path.endswith(".tif") or path.endswith(".tiff"):
    
    ~/Documents/github/icecube/icecube/utils/analytics_IO.py in read_SLC_metadata(h5_io)
        329 
        330     # RPCs are nested under "RPC/" in the h5 thus need to be parsed in a specific manner
    --> 331     RPC_source = h5_io["RPC"]
        332     meta_dict["RPC"] = parse_slc_rpc_to_meta_dict(
        333         RPC_source=RPC_source, meta_dict=meta_dict
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    /opt/homebrew/anaconda3/envs/icecube_env/lib/python3.8/site-packages/h5py/_hl/group.py in __getitem__(self, name)
        303                 raise ValueError("Invalid HDF5 object reference")
        304         elif isinstance(name, (bytes, str)):
    --> 305             oid = h5o.open(self.id, self._e(name), lapl=self._lapl)
        306         else:
        307             raise TypeError("Accessing a group is done with bytes or str, "
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
    
    h5py/h5o.pyx in h5py.h5o.open()
    
    KeyError: "Unable to open object (object 'RPC' doesn't exist)"
    
    opened by shaystrong 3
  • scikit-image dependency  fails on OSX M1 chip

    scikit-image dependency fails on OSX M1 chip

    Can't install all requirements for icecube on an M1 chip. This may present a future problem, just documenting for awareness. scikit-image cannot seem to be compiled/installed/etc on the M1. I have not tested the conda installation, as perhaps that does work. But i use brew/pip (and conda can create conflicts with those)

    opened by shaystrong 2
  • Fix/labels coords

    Fix/labels coords

    Summary includes:

    • Making xr.dataset structure coherent for labels and SAR (added time coords for labels)
    • For labels datacube, product_fpath are used compared to previously
    • small typo fixed
    • tests added for merging sar cubes with labels cube
    • instructions/cell added to install ml requirements for notebook#5
    • release notes added to mkdocs
    • steup.py updated with ml requirements and version
    opened by muaali 1
  • Update/docs/notebooks

    Update/docs/notebooks

    Changes involve:

    • Introduced a new markdown file called "overview.md" that talks about the structure of examples under docs/
    • Added a new notebook : CreatingDatacube that walks a user how to create datacubes with different methods
    • Other notebooks updated and improved.
    opened by muaali 1
  • missing RPC metadata set to None

    missing RPC metadata set to None

    related to issue: https://github.com/iceye-ltd/icecube/issues/11 Some of old ICEYE images can have RPC information missing. If that happens RPC key will be missing and pipeline does not work. RPC is now set to None if it's missing with a user warning generated.

    opened by muaali 0
  • feat/general metadata

    feat/general metadata

    Following changes introduced:

    • metadata constraints loosen up to allow merging general SAR data (rasterio/HDF5 compatible). But this means that cube configuration is not available for such rasters
    • .tiff support added for GRDs
    • code refactoring in SARDatacubeMetadata to avoid repetitive code
    opened by muaali 0
  • Labels/subset support

    Labels/subset support

    Changes include:

    • Updating SLC metadata reader to avoid key values stored as HDF5 dataset
    • Enabling cube generation from labels.json that have masks/labels for subset rasters (i.e., number of masks ingested into labels cube don't necessarily have to be same as number of rasters)
    • CHUNK_SIZE have been reduced to provide more optimized performance for creating massive datacubes
    opened by muaali 0
  • bin module not found

    bin module not found

    After installing from github using !pip install git+https://github.com/iceye-ltd/icecube.git it imports well icecube, but it throws this error for module bin ModuleNotFoundError: No module named 'icecube.bin'

    Any advice, thanks

    opened by jaimebayes 0
  • dummy_mask_labels.json

    dummy_mask_labels.json

    FileNotFoundError: [Errno 2] No such file or directory: './resources/labels/dummy_mask_labels.json'

    Could you upload it? is it available? Thanks in advance,

    opened by jaimebayes 0
Releases(1.1.0)
Owner
ICEYE Ltd
ICEYE Ltd
ICEYE Ltd
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023