Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Overview

Expressive Power of Invariant and Equivaraint Graph Neural Networks

In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alignment problem. This code was used to derive the practical results in the following paper:

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks, ICLR 2021.

arXiv OpenReview

Problem: alignment of graphs

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. Here we consider a noisy version of this problem: the two graphs below are noisy versions of a parent graph. There is no strict isomorphism between them. Can we still match the vertices of graph 1 with the corresponding vertices of graph 2?

graph 1 graph 2

With our GNN, we obtain the following results: green vertices are well paired vertices and red vertices are errors. Both graphs are now represented using the layout from the right above but the color of the vertices are the same on both sides. At inference, our GNN builds node embedding for the vertices of graphs 1 and 2. Finally a node of graph 1 is matched to its most similar node of graph 2 in this embedding space.

graph 1 graph 2

Below, on the left, we plot the errors made by our GNN: errors made on red vertices are represented by links corresponding to a wrong matching or cycle; on the right, we superpose the two graphs: green edges are in both graphs (they correspond to the parent graph), orange edges are in graph 1 only and blue edges are in graph 2 only. We clearly see the impact of the noisy edges (orange and blue) as each red vertex (corresponding to an error) is connected to such edges (except the isolated red vertex).

Wrong matchings/cycles Superposing the 2 graphs

To measure the performance of our GNN, instead of looking at vertices, we can look at edges. On the left below, we see that our GNN recovers most of the green edges present in graphs 1 and 2 (edges from the parent graph). On the right, mismatched edges correspond mostly to noisy (orange and blue) edges (present in only one of the graphs 1 or 2).

Matched edges Mismatched edges

Training GNN for the graph alignment problem

For the training of our GNN, we generate synthetic datasets as follows: first sample the parent graph and then add edges to construct graphs 1 and 2. We obtain a dataset made of pairs of graphs for which we know the true matching of vertices. We then use a siamese encoder as shown below where the same GNN (i.e. shared weights) is used for both graphs. The node embeddings constructed for each graph are then used to predict the corresponding permutation index by taking the outer product and a softmax along each row. The GNN is trained with a standard cross-entropy loss. At inference, we can add a LAP solver to get a permutation from the matrix .

Various architectures can be used for the GNN and we find that FGNN (first introduced by Maron et al. in Provably Powerful Graph Networks NeurIPS 2019) are best performing for our task. In our paper Expressive Power of Invariant and Equivariant Graph Neural Networks, we substantiate these empirical findings by proving that FGNN has a better power of approximation among all equivariant architectures working with tensors of order 2 presented so far (this includes message passing GNN or linear GNN).

Results

Each line corresponds to a model trained at a given noise level and shows its accuracy across all noise levels. We see that pretrained models generalize very well at noise levels unseen during the training.

We provide a simple notebook to reproduce this result for the pretrained model released with this repository (to run the notebook create a ipykernel with name gnn and with the required dependencies as described below).

We refer to our paper for comparisons with other algorithms (message passing GNN, spectral or SDP algorithms).

To cite our paper:

@inproceedings{azizian2020characterizing,
  title={Expressive power of invariant and equivariant graph neural networks},
  author={Azizian, Wa{\"\i}ss and Lelarge, Marc},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=lxHgXYN4bwl}
}

Overview of the code

Project structure

.
├── loaders
|   └── dataset selector
|   └── data_generator.py # generating random graphs
|   └── test_data_generator.py
|   └── siamese_loader.py # loading pairs 
├── models
|   └── architecture selector
|   └── layers.py # equivariant block
|   └── base_model.py # powerful GNN Graph -> Graph
|   └── siamese_net.py # GNN to match graphs
├── toolbox
|   └── optimizer and losses selectors
|   └── logger.py  # keeping track of most results during training
|   └── metrics.py # computing scores
|   └── losses.py  # computing losses
|   └── optimizer.py # optimizers
|   └── utility.py
|   └── maskedtensor.py # Tensor-like class to handle batches of graphs of different sizes
├── commander.py # main file from the project serving for calling all necessary functions for training and testing
├── trainer.py # pipelines for training and validation
├── eval.py # testing models

Dependencies

Dependencies are listed in requirements.txt. To install, run

pip install -r requirements.txt

Training

Run the main file commander.py with the command train

python train commander.py

To change options, use Sacred command-line interface and see default.yaml for the configuration structure. For instance,

python commander.py train with cpu=No data.generative_model=Regular train.epoch=10 

You can also copy default.yaml and modify the configuration parameters there. Loading the configuration in other.yaml (or other.json) can be done with

python commander.py train with other.yaml

See Sacred documentation for an exhaustive reference.

To save logs to Neptune, you need to provide your own API key via the dedicated environment variable.

The model is regularly saved in the folder runs.

Evaluating

There are two ways of evaluating the models. If you juste ran the training with a configuration conf.yaml, you can simply do,

python commander.py eval with conf.yaml

You can omit with conf.yaml if you are using the default configuartion.

If you downloaded a model with a config file from here, you can edit the section test_data of this config if you wish and then run,

python commander.py eval with /path/to/config model_path=/path/to/model.pth.tar
Comments
  • need 2 different model_path variables

    need 2 different model_path variables

    When not starting anew, model_path_load should contain the path to the model. model_path should then be the path to save the new learned model. Right now, the model_path_load is used for the evaluation!

    bug 
    opened by mlelarge 1
  • Unify the different problems

    Unify the different problems

    The previous commands for training and evaluation should still work the same, even though it uses a different configuration file at the beginning. It still uses Sacred the same way for the commander.py. The problem can be switched from the config file. The main change in the previous code is the use of the Helper class (in toolbox/helper.py) which is the class that coordinates each problem (see the file for further info).

    Also added the 'article_commander.py' which generates the data for comparison between planted problems and the corresponding NP-problem, which works in a similar way to commander.py.

    opened by MauTrib 1
  • Reorganize a commander.py

    Reorganize a commander.py

    This PR tries to unify the train and eval CLI wth the use of a single config file. See default.yaml for the result and the README for more information. Please, don't hesitate to comment on changes you don't approve or dislike. Bests,

    opened by wazizian 1
  • Fix convention for tensor shapes

    Fix convention for tensor shapes

    Hi! I am modifying the code so the same convention for the shape of tensors is used everywhere (see PR). But I'm not sure we have chosen the right one. You and we have chosen(bs, n_vertices, n_vertices, features)but Marron preferred (bs, features, n_vertices, n_vertices). Indeed the later matches Pytorch's convention for images and so makes convolutions natural. In one case, MLPs and blocks have to be adapted and in the other, it is the data generation process, so it is a similar amount of work. What do you think ? Bests, Waïss

    opened by wazizian 1
  • added normalization + embeddings

    added normalization + embeddings

    I modified slightly the architecture and training seems much better and more stable. I added a first embedding layer and BN after multiplication and at the output.

    opened by mlelarge 0
Releases(QAP)
  • QAP(Jan 21, 2021)

    Config: "data": {"num_examples_train": 20000, "num_examples_val": 1000, "generative_model": "Regular", "noise_model": "ErdosRenyi", "edge_density": 0.2, "n_vertices": 50, "vertex_proba": 1.0, "noise": 0.15, "path_dataset": "dataset"}, "train": {"epoch": 50, "batch_size": 32, "lr": 0.0001, "scheduler_step": 5, "scheduler_decay": 0.9, "print_freq": 100, "loss_reduction": "mean"}, "arch": {"arch": "Siamese_Model", "model_name": "Simple_Node_Embedding", "num_blocks": 2, "original_features_num": 2, "in_features": 64, "out_features": 64, "depth_of_mlp": 3}

    Source code(tar.gz)
    Source code(zip)
    config.json(601 bytes)
    model_best.pth.tar(333.26 KB)
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022