QuALITY: Question Answering with Long Input Texts, Yes!

Related tags

Deep Learningquality
Overview

QuALITY: Question Answering with Long Input Texts, Yes!

Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman (* = equal contribution)

Data link

Download QuALITY v0.9 (zip).

Paper preprint

You can read the paper here.

Data README

Here are the explanations to the fields in the jsonl file. Each json line corresponds to the set of validated questions, corresponding to one article, written by one writer.

  • article_id: String. A five-digit number uniquely identifying the article. In each split, there are exactly two lines containing the same article_id, because two writers wrote questions for the same article.
  • set_unique_id: String. The unique ID corresponding to the set of questions, which corresponds to the line of json. Each set of questions is written by the same writer.
  • batch_num: String. The batch number. Our data collection is split in two groups, and there are three batches in each group. [i][j] means the j-th batch in the i-th group. For example, 23 corresponds to the third batch in the second group.
  • writer_id: String. The anonymized ID of the writer who wrote this set of questions.
  • source: String. The source of the article.
  • title: String. The title of the article.
  • author: String. The author of the article.
  • topic: String. The topic of the article.
  • url: String. The URL of the original unprocessed source article.
  • license: String. The license information for the article.
  • article: String. The HTML of the article. A script that converts HTML to plain texts is provided.
  • questions: A list of dictionaries explained below. Each line of json has a different number of questions because some questions were removed following validation.

As discussed, the value of questions is a list of dictionaries. Each dictionary has the following fields.

  • question: The question.
  • options: A list of four answer options.
  • gold_label: The correct answer, defined by a majority vote of 3 or 5 annotators + the original writer's label. The number corresponds to the option number (1-indexed) in options.
  • writer_label: The label the writer provided. The number corresponds to the option number (1-indexed) in options.
  • validation: A list of dictionaries containing the untimed validation results. Each dictionary contains the following fields.
    • untimed_annotator_id: The anonymized annotator IDs corresponding to the untimed validation results shown in untimed_answer.
    • untimed_answer: The responses in the untimed validation. Each question in the training set is annotated by three workers in most cases, and each question in the dev/test sets is annotated by five cases in most cases (see paper for exceptions).
    • untimed_eval1_answerability: The responses (represented numerically) to the first eval question in untimed validation. We asked the raters: “Is the question answerable and unambiguous?” The values correspond to the following choices:
      • 1: Yes, there is a single answer choice that is the most correct.
      • 2: No, two or more answer choices are equally correct.
      • 3: No, it is unclear what the question is asking, or the question or answer choices are unrelated to the passage.
    • untimed_eval2_context: The responses (represented numerically) to the second eval question in untimed validation. We asked the raters: “How much of the passage/text is needed as context to answer this question correctly?” The values correspond to the following choices:
      • 1: Only a sentence or two of context.
      • 2: At least a long paragraph or two of context.
      • 3: At least a third of the passage for context.
      • 4: Most or all of the passage for context.
    • untimed_eval3_distractor: The responses to the third eval question in untimed validation. We asked the raters: “Which of the options that you did not select was the best "distractor" item (i.e., an answer choice that you might be tempted to select if you hadn't read the text very closely)?” The numbers correspond to the option numbers (1-indexed).
  • speed_validation: A list of dictionaries containing the speed validation results. Each dictionary contains the following fields.
    • speed_annotator_id: The anonymized annotator IDs corresponding to the speed annotation results shown in speed_answer.
    • speed_answer: The responses in the speed validation. Each question is annotated by five workers.
  • difficult: A binary value. 1 means that less than 50% of the speed annotations answer the question correctly, so we include this question in the hard subset. Otherwise, the value is 0. In our evaluations, we report one accuracy figure for the entire dataset, and a second for the difficult=1 subset.

Validation criteria for the questions

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label (defined as the majority vote of validators' annotations together with the writer's provided label).
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.

What are the hard questions?

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label.
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.
  • More than 50% of annotators answer the question incorrectly in the speed validaiton setting. That is, more than 50% of the speed_answer annotations are incorrect.

Test set

The annotations for questions in the test set will not be released. We are currently working on a leaderboard. Stay tuned for an update by early January!

Code

The code for our baseline models will be released soon. Stay tuned for an update by early January!

Citation

@article{pang2021quality,
  title={{QuALITY}: Question Answering with Long Input Texts, Yes!},
  author={Pang, Richard Yuanzhe and Parrish, Alicia and Joshi, Nitish and Nangia, Nikita and Phang, Jason and Chen, Angelica and Padmakumar, Vishakh and Ma, Johnny and Thompson, Jana and He, He and Bowman, Samuel R.},
  journal={arXiv preprint arXiv:2112.08608},
  year={2021}
}

Contact

{yzpang, alicia.v.parrish}@nyu.edu

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022