Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

Overview

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece is a "tokenizer" for reducing entity vocabulary size in knowledge graphs. Instead of shallow embedding every node to a vector, we first "tokenize" each node by K anchor nodes and M relation types in its relational context. Then, the resulting hash sequence is encoded through any injective function, e.g., MLP or Transformer.

Similar to Byte-Pair Encoding and WordPiece tokenizers commonly used in NLP, NodePiece can tokenize unseen nodes attached to the seen graph using the same anchor and relation vocabulary, which allows NodePiece to work out-of-the-box in the inductive settings using all the well-known scoring functions in the classical KG completion (like TransE or RotatE). NodePiece also works with GNNs (we tested on node classification, but not limited to it, of course).

NodePiece source code

The repo contains the code and experimental setups for reproducibility studies.

Each experiment resides in the respective folder:

  • LP_RP - link prediction and relation prediction
  • NC - node classification
  • OOS_LP - out-of-sample link prediction

The repo is based on Python 3.8. wandb is an optional requirement in case you have an existing account there and would like to track experimental results. If you have a wandb account, the repo assumes you've performed

wandb login <your_api_key>

Using a GPU is recommended.

First, run a script which will download all the necessary pre-processed data and datasets. It takes approximately 1 GB.

sh download_data.sh

We packed the pre-processed data for faster experimenting with the repo. Note that there are two NodePiece tokenization modes (-tkn_mode [option]): path and bfs:

  • path is an old tokenization strategy (based on finding shortest paths between each node and all anchors) under which we performed the experiments and packed the data for reproducibility;
  • bfs is a new strategy (based on iterative expansion of node's neighborhood until a desired number of anchors is reached) which is 5-50x faster and takes 4-5x less space depending on the KG. Currently, works for transductive LP/RP tasks;

Pre-processing times tested on M1 MacBook Pro / 8 GB:

mode FB15k-237 / vocab size WN18RR / vocab size YAGO 3-10 / vocab size
path 2 min / 28 MB 5 min / 140 MB ~ 5 hours / 240 MB
bfs 8 sec / 7.5 MB 30 sec / 20 MB 4.5 min / 40 MB

CoDEx-Large and YAGO path pre-processing is better run on a server with 16-32 GB RAM and might take 2-5 hours depending on the chosen number of anchors.

NB: we seek to further improve the algorithms to make the tokenization process even faster than the bfs strategy.

Second, install the dependencies in requirements.txt. Note that when installing Torch-Geometric you might want to use pre-compiled binaries for a certain version of python and torch. Check the manual here.

In the link prediction tasks, all the necessary datasets will be downloaded upon first script execution.

Link Prediction

The link prediction (LP) and relation prediction (RP) tasks use models, datasets, and evaluation protocols from PyKEEN.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py.

  • Run the fb15k-237 experiment
python run_lp.py -loop lcwa -loss bce -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -sample_rels 15 -smoothing 0.4 -epochs 401
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -margin 15 -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -pool cat -embedding 200 -negs 20 -subbatch 2000 -sample_rels 4 -epochs 601
  • Run the codex-l experiment
python run_lp.py -loop lcwa -loss bce -b 256 -data codex_l -anchors 7000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -subbatch 10000 -sample_rels 6 -smoothing 0.3 -epochs 120
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -margin 50 -b 512 -data yago -anchors 10000 -sp 100 -lr 0.00025 -ft_maxp 20 -pool cat -embedding 200 -subbatch 2000 -sample_rels 5 -negs 10 -epochs 601

Test evaluation reproducibility patch

PyKEEN 1.0.5 used in this repo has been identified to have issues at the filtering stage when evaluating on the test set. In order to fully reproduce the reported test set numbers for transductive LP/RP experiments from the paper and resolve this issue, please apply the patch from the lp_rp/patch folder:

  1. Locate pykeen in your environment installation:
<path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen
  1. Replace the evaluation/evaluator.py with the one from the patch folder
cp ./lp_rp/patch/evaluator.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/evaluation/
  1. Replace the stoppers/early_stopping.py with the one from the patch folder
cp ./lp_rp/patch/early_stopping.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/stoppers/

This won't be needed once we port the codebase to newest versions of PyKEEN (1.4.0+) where this was fixed

Relation Prediction

The setup is very similar to that of link prediction (LP) but we predict relations (h,?,t) now.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py

  • Run the fb15k-237 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 15 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 15 -epochs 21 --rel-prediction True
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -margin 12 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 4 -epochs 151 --rel-prediction True
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data yago -anchors 10000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 25 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 5 -epochs 7 --rel-prediction True

Node Classification

Navigate to the nc folder: cd nc .

The list of CLI params can be found in run_nc.py

If you have a GPU, use DEVICE cuda otherwise DEVICE cpu.

The run on 5% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.05 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

The run on 10% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.1 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

Out-of-sample Link Prediction

Navigate to the oos_lp folder: cd oos_lp/src.

The list of CLI params can be found in main.py.

  • Run the oos fb15k-237 experiment
python main.py -dataset FB15k-237 -model_name DM_NP_fb -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 1000 -sample_rels 15
  • Run the oos yago3-10 experiment
python main.py -dataset YAGO3-10 -model_name DM_NP_yago -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 10000 -sample_rels 5

Citation

If you find this work useful, please consider citing the paper:

@misc{galkin2021nodepiece,
    title={NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs},
    author={Mikhail Galkin and Jiapeng Wu and Etienne Denis and William L. Hamilton},
    year={2021},
    eprint={2106.12144},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Michael Galkin
Michael Galkin
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023