[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

Overview

MonoRUn

MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*, Zhong Gao, Lu Xiong. (*Corresponding author: Wei Tian.)

This repository is the PyTorch implementation for MonoRUn. The codes are based on MMDetection and MMDetection3D, although we use our own data formats. The PnP C++ codes are modified from PVNet.

demo

Installation

Please refer to INSTALL.md.

Data preparation

Download the official KITTI 3D object dataset, including left color images, calibration files and training labels.

Download the train/val/test image lists [Google Drive | Baidu Pan, password: cj4u]. For training with LiDAR supervision, download the preprocessed object coordinate maps [Google Drive | Baidu Pan, password: fp3h].

Extract the downloaded archives according to the following folder structure. It is recommended to symlink the dataset root to $MonoRUn_ROOT/data. If your folder structure is different, you may need to change the corresponding paths in config files.

$MonoRUn_ROOT
├── configs
├── monorun
├── tools
├── data
│   ├── kitti
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   └── test_list.txt
│   │   └── training
│   │       ├── calib
│   │       ├── image_2
│   │       ├── label_2
│   │       ├── obj_crd
│   │       ├── mono3dsplit_train_list.txt
│   │       ├── mono3dsplit_val_list.txt
│   │       └── trainval_list.txt

Run the preparation script to generate image metas:

cd $MonoRUn_ROOT
python tools/prepare_kitti.py

Train

cd $MonoRUn_ROOT

To train without LiDAR supervision:

python train.py configs/kitti_multiclass.py --gpu-ids 0 1

where --gpu-ids 0 1 specifies the GPU IDs. In the paper we use two GPUs for distributed training. The number of GPUs affects the mini-batch size. You may change the samples_per_gpu option in the config file to vary the number of images per GPU. If you encounter out of memory issue, add the argument --seed 0 --deterministic to save GPU memory.

To train with LiDAR supervision:

python train.py configs/kitti_multiclass_lidar_supv.py --gpu-ids 0 1

To view other training options:

python train.py -h

By default, logs and checkpoints will be saved to $MonoRUn_ROOT/work_dirs. You can run TensorBoard to plot the logs:

tensorboard --logdir $MonoRUn_ROOT/work_dirs

The above configs use the 3712-image split for training and the other split for validating. If you want to train on the full training set (train-val), use the config files with _trainval postfix.

Test

You can download the pretrained models:

  • kitti_multiclass.pth [Google Drive | Baidu Pan, password: 6bih] trained on KITTI training split
  • kitti_multiclass_lidar_supv.pth [Google Drive | Baidu Pan, password: nmdb] trained on KITTI training split
  • kitti_multiclass_lidar_supv_trainval.pth [Google Drive | Baidu Pan, password: hg2r] trained on KITTI train-val

To test and evaluate on the validation set using config at $CONFIG_PATH and checkpoint at $CPT_PATH:

python test.py $CONFIG_PATH $CPT_PATH --val-set --gpu-ids 0

To test on the test set and save detection results to $RESULT_DIR:

python test.py $CONFIG_PATH $CPT_PATH --result-dir $RESULT_DIR --gpu-ids 0

You can append the argument --show-dir $SHOW_DIR to save visualized results.

To view other testing options:

python test.py -h

Note: the training and testing scripts in the root directory are wrappers for the original scripts taken from MMDetection, which can be found in $MonoRUn_ROOT/tools. For advanced usage, please refer to the official MMDetection docs.

Demo

We provide a demo script to perform inference on images in a directory and save the visualized results. Example:

python demo/infer_imgs.py $KITTI_RAW_DIR/2011_09_30/2011_09_30_drive_0027_sync/image_02/data configs/kitti_multiclass_lidar_supv_trainval.py checkpoints/kitti_multiclass_lidar_supv_trainval.pth --calib demo/calib.csv --show-dir show/2011_09_30_drive_0027

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{monorun2021, 
  author = {Hansheng Chen and Yuyao Huang and Wei Tian and Zhong Gao and Lu Xiong}, 
  title = {MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation}, 
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  year = {2021}
}
Owner
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022