An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Overview

Dem Bones

BSD3 Clause Version

This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear Blend Skinning (LBS) with bone transformations from a set of example meshes. Skinning Decomposition can be used in various tasks:

  • converting any animated mesh sequence, e.g. geometry cache, to LBS, which can be replayed in popular game engines,
  • solving skinning weights from shapes and skeleton poses, e.g. converting blendshapes to LBS,
  • solving bone transformations for a mesh animation given skinning weights.

This project is named after "The Skeleton Dance" by Super Simple Songs.

Contents

  • include/DemBones: C++ header-only core library using Eigen and OpenMP. Check out the documentations in docs/index.html.
  • bin: pre-compiled command line tools for Windows, Linux, and MacOS that read and write FBX and Alembic files. Check out the usage by running DemBones --help.
  • src/command: source code for the command line tool. Check out AbcReader.cpp, FbxReader.cpp, and FbxWriter.cpp for the usage of the core library.
  • data: input/output test data for the command line tool. Run and check out the scripts run.bat (Windows) or ./run.sh (Linux/MacOS).

Compiling

Tested platforms:

  • Visual Studio 2019 on Windows 10 x64
  • g++ 9.3.0 on Ubuntu Linux 20.14
  • LLVM 10.0.0 (Homebrew) on MacOS 10.13.6

Compiling steps:

  1. Install cmake
  2. Copy the following libraries to their respective folders in ExtLibs so that cmake can find these paths:
  3. Run cmake:
mkdir build
cd build
cmake ..
  1. Build: $ cmake --build . --config Release --target install

Notes for Linux

Notes for MacOS

  • Apple Clang (default compiler) does not support OpenMP and Eigen. We recommend using LLVM. Assuming LLVM is installed in the default path: /usr/local/opt/llvm/bin, instead of cmake .., you can run:

    $ cmake -DCMAKE_C_COMPILER=/usr/local/opt/llvm/bin/clang -DCMAKE_CXX_COMPILER=/usr/local/opt/llvm/bin/clang++ ..
    
  • The pre-compiled tool bin/DemBones requires dynamic libomp for LLVM. If you have an error messeage related to OpenMP, please install libomp, e.g. with Homebrew using $ brew install libomp.

  • bin/MacOS/DemBones was compiled with the optimization flag -O3. It looks like LLVM uses fast math so the results are slightly different with those generated by Windows version. Removing optimization flags (in CMakeLists.txt) helps to reproduce the same results with Windows version but the tool will run 10x slower.

References

If you use the library or the command line tool, please cite the paper:

Binh Huy Le and Zhigang Deng. Smooth Skinning Decomposition with Rigid Bones. ACM Transactions on Graphics 31(6), Proceedings of ACM SIGGRAPH Asia 2012.

BibTeX:

@article{LeDeng2012,
    author = {Le, Binh Huy and Deng, Zhigang},
    title = {Smooth Skinning Decomposition with Rigid Bones},
    journal = {ACM Trans. Graph.},
    volume = {31},
    number = {6},
    year = {2012}
} 

The skinning weights smoothing regularization was published in the paper:

Binh Huy Le and Zhigang Deng. Robust and Accurate Skeletal Rigging from Mesh Sequences. ACM Transactions on Graphics 33(4), Proceedings of ACM SIGGRAPH 2014.

Authors


Search for Extraordinary Experiences Division (SEED) - Electronic Arts
http://seed.ea.com

We are a cross-disciplinary team within EA Worldwide Studios.
Our mission is to explore, build and help define the future of interactive entertainment.

Dem Bones was created by Binh Le ([email protected]). The logo was designed by Phuong Le.

Contributing

Before you can contribute, EA must have a Contributor License Agreement (CLA) on file that has been signed by each contributor. You can sign here: http://bit.ly/electronic-arts-cla

Licenses

  • The source code, including include/DemBones and src/command, uses BSD 3-Clause License as detailed in LICENSE.md
  • The pre-compiled command line tool bin/DemBones(.exe) uses third party libraries: Eigen, tclap, Alembic, FBXSDK, and zlib with licenses in 3RDPARTYLICENSES.md
Comments
  • Question about transAffine and transAffineNorm regularizers

    Question about transAffine and transAffineNorm regularizers

    Hi, I am really confused about the transAffine and transAffineNorm regularizers. I read the original SSDR paper and some following papers like the Robust SSDR in 2014, but can't find the reference for transAffineNorm regularizers.

    Would you please tell the reference about the transAffine and transAffineNorm regularizers? Thanks a lot!

    opened by pramanc 4
  • Infinite loop when initializing bones

    Infinite loop when initializing bones

    Occasionally I run in to cases where DemBones gets stuck in an infinite loop while trying to initialize the bones in DemBones.h init(). I've attached a sample fbx and abc that causes the issue.

    faceshapes.zip

    Any insight as to why?

    ../bin/DemBones.exe -i="neutral.fbx" -a="face_rom.abc" -b=64 -o="Decomposition_64.fbx"
    1 animated mesh sequence(s):
        "face_rom.abc" + "neutral.fbx" --> "Decomposition_64.fbx"
    Parameters:
        nBones (target)    = 64
        nInitIters         = 10 (default)
        nIters             = 30 (default)
        nTransIters        = 5 (default)
        nWeightsIters      = 3 (default)
        bindUpdate         = 0 (no update) (default)
        transAffine        = 10 (default)
        transAffineNorm    = 4 (default)
        nnz                = 8 (default)
        weightsSmooth      = 0.0001 (default)
        weightsSmoothStep  = 1 (default)
    Checking ABCs:
        "face_rom.abc": /Louise_asym/Louise_asymShape (57 frames)
    Reading ABCs......................................................... Done!
    Reading FBXs:
        "neutral.fbx"... Done!
        5034 vertices
    Initializing bones: 1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>
    
    opened by chadmv 4
  • Can dem-bones work directly on a PLY or OBJ sequence?

    Can dem-bones work directly on a PLY or OBJ sequence?

    Is it possible for Dem-Bones to directly convert a sequence of PLY or OBJ files into a single animated and skinned FBX, instead of using an animated Alembic files?

    opened by aapatre 2
  • Question about rigid transformation from covariance matrix

    Question about rigid transformation from covariance matrix

    Hi, Thanks for your code! Really nice work! I have one question about Best Rigid Transformation from covariance matrix. From the paper here https://igl.ethz.ch/projects/ARAP/svd_rot.pdf or the SSDR paper

    in the function qpT2m:

    Eigen::JacobiSVD svd(...) d(2, 2) = (svd.matrixU()*svd.matrixV.transpose()).determinant(); m.rotMat(k, j) = svd.matrixU()dsvd.matrixV().transpose();

    should be ?

    d(2, 2) = (svd.matrixV()*svd.matrixU.transpose()).determinant(); m.rotMat(k, j) = svd.matrixV()dsvd.matrixU().transpose();

    =================================== but definitly from the result, your implementation is right. I'm really confused!

    Thanks!

    opened by pramanc 2
  • how to compile in debug mode

    how to compile in debug mode

    I compile in debug mode in VS2019, Win10. all configures are in debug mode when configure cmake-gui. FBXSDK is debug version lib.

    but it seems Alembic from Alembic (from Maya 2020 Update 2 DevKit) only contains release libs. How to get Debug version Alembic? Should I compile Alembic from https://github.com/alembic/alembic? Then how to organize the catalogue? Which version of Alembic (from Maya 2020 Update 2 DevKit) is?

    The compile error is: 1>Alembic.lib(DataTypeRegistry.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(SprImpl.cpp.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(SprImpl.cpp.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(AprImpl.cpp.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(AprImpl.cpp.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(ScalarPropertyWriter.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(ScalarPropertyWriter.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(ArrayPropertyWriter.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(ArrayPropertyWriter.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(ArrayPropertyReader.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(ArrayPropertyReader.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>Alembic.lib(ScalarSample.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>Alembic.lib(ScalarSample.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>AlembicHalf.lib(half.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>AlembicHalf.lib(half.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>AlembicIex.lib(IexBaseExc.obj) : error LNK2038: mismatch detected for '_ITERATOR_DEBUG_LEVEL': value '0' doesn't match value '2' in AbcReader.obj 1>AlembicIex.lib(IexBaseExc.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MD_DynamicRelease' doesn't match value 'MDd_DynamicDebug' in AbcReader.obj 1>LINK : warning LNK4098: defaultlib 'MSVCRT' conflicts with use of other libs; use /NODEFAULTLIB:library 1>D:\Projects\dem-bones\build_debug\Debug\DemBones.exe : fatal error LNK1319: 184 mismatches detected 1>Done building project "DemBonesCmd.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 1 up-to-date, 0 skipped ==========

    opened by tang1485 2
  • Question about lockW/lockM

    Question about lockW/lockM

    There are finished skin meshes and animations, and then I added some blend shapes. I added some new bones at the origin without animation, and set lockM to 0 for those new bones. (The original bone is set to 1) Set the lockW value of the deformation vertex to 0. (set Others to 1) Set matrix w and matrix m with original data,set w value of new bones to 0, and m value of new bones to Matrix4::Identity(). I want these bones to replace blend shapes,but it did not work. The result of the compute is that these bones are still at the origin, and there are no vertices with their weights. I don't know how to work properly

    opened by Space-Invader-GS 1
  • Could it be possible to transform joint scale?

    Could it be possible to transform joint scale?

    Hi and thanks a lot for this, it works very well !

    I was wondering if it could be possible to allow joint scale to better match the deformed geometry. I think, in some cases where scale is supported, it could help reduce the number of bone needed.

    Thanks again!

    opened by JonasOuellet 1
  • The translation data of bones are always the same! But it changes when view in Maya!

    The translation data of bones are always the same! But it changes when view in Maya!

    Hi, I recently used SSDR created a skeleton animation and write the animation into an .fbx file. Then I tried to use fbxsdk to extract the translation and rotation data of each bone from the animation.

    However, I found that the extracted translation or rotation(both Global or Local ) data are always the same as the initial value, but when I import the fbx file into Maya, the animation looks fine, and the local translation and rotation value of each bone varies over time. The data extraction code are shown below:

    One thing wierd is that I found the number of AnimStack in the .fbx which created by SSDR are always 2. I'm not sure whether this factor leads to my problem.

    bool readFbx(string file_path)
    {
    	FbxManager* Sdkmanager = NULL;
    	fbxsdk::FbxScene* Scene = NULL;
    	bool Result;
    	//prepare the FBX SDK
    	InitializeSdkObjects(Sdkmanager, Scene);
    	FbxString file(file_path.c_str());
    	Result = LoadScene(Sdkmanager, Scene, file.Buffer());
    	vector<FbxString>boneName;
    	vector<fbxsdk::FbxNode*>bone_Node;
    	if (Result == false)
    	{
    		FBXSDK_printf("\n\nAn error occurred while loading the scene...");
    		return Result;
    	}
            else
    	{
    		// get the name of each bones of the skeleton
    		fbxsdk::FbxNode* root = Scene->GetRootNode();
    		for (int i = 0; i < root->GetChildCount(); ++i)
    		{
    			fbxsdk::FbxNode* pNode = root->GetChild(i);
    			fbxsdk::FbxNodeAttribute::EType lAttributeType;
    			if (pNode->GetNodeAttribute() == NULL)
    			{
    				FBXSDK_printf("NULL Node Attribute\n\n");
    			}
    			else
    			{
    				lAttributeType = (pNode->GetNodeAttribute()->GetAttributeType());
    				switch (lAttributeType)
    				{
    				case fbxsdk::FbxNodeAttribute::eSkeleton:
    					GetSkeletonInformation(boneName, bone_Node, pNode);//遍历节点找到mesh节点
    					break;
    				case FbxNodeAttribute::eCamera:
    					break;
    				default:
    					break;
    				}
    			}
    		}
                    // read the global translation data over time
    		const int AnimStackCount = Scene->GetSrcObjectCount<fbxsdk::FbxAnimStack>();
    		for (int i = 0; i < AnimStackCount; ++i)
    		{
    			fbxsdk::FbxAnimStack* pstack = Scene->GetSrcObject<fbxsdk::FbxAnimStack>(i);
    			const char* stackname = pstack->GetName();
    			cout << "Stack: " << stackname << endl;
    
    			const int nLayerCount = pstack->GetMemberCount();
    			for (int j = 0; j < nLayerCount; ++j)
    			{
    				fbxsdk::FbxAnimLayer* pLayer = pstack->GetMember<fbxsdk::FbxAnimLayer>(j);
    				const char* layername = pLayer->GetName();
    				cout << "Layer: " << layername << endl;
    				fbxsdk::FbxAnimCurve* lCurveRX = bone_Node[0]->LclRotation.GetCurve(pLayer, FBXSDK_CURVENODE_COMPONENT_X, false);
    				if (lCurveRX == NULL)
    				{
    					continue;
    				}
    				int pRXCount = lCurveRX->KeyGetCount();
    				for (int s = 0; s < pRXCount; ++s)
    				{
    					FbxTime ktime = lCurveRX->KeyGetTime(s);
    					vector<float> bone_position;
    					for (int bone = 0; bone < bone_Node.size(); ++bone)
    					{
    						FbxAMatrix GLOBAL = bone_Node[bone]->EvaluateLocalTransform(ktime);
    						FbxVector4 T = GLOBAL.GetT();
    						
    						fbxsdk::FbxString tmpName("LiYuanQian_rig_v001:Root_M");
    						if (boneName[bone] == tmpName)
    						{
    							cout << tmpName.Buffer() << "frame: " << s << " trans:" << T[0] << "," << T[1] << "," << T[2] << "." << " ktime"  << endl;;
    						}
    						
    						for (int k = 0; k < 3; ++k)
    						{
    							bone_position.push_back(T[k]);
    							
    						}
    					}
    				}
    
    			}
    		}
    		return Result;
    	}
    }
    
    opened by ANYMS-A 1
  • Consultation about bone joints constraints

    Consultation about bone joints constraints

    Thanks sincerely for sharing your code on Github, But I still have a few confusion. I don't see any code implementing bone joints constraints. I don't know if I missed something or you have not updated it yet.

    opened by OvidZheng 1
  • Template error message in VS2019

    Template error message in VS2019

    Hello,

    I am getting the following error messages when I compile demBones in VS2019:

    Error: Dem::DemBones: use of class templates requires template argument list

    Error C2352 'Dem::DemBones<_Scalar,_AniMeshScalar>::clear': illegal call of non-static member function cmt C:\Users\max\source\repos\cmt\src\DemBones\DemBonesExt.h 108

    The line error is in bold text.

    DemBonesExt.h ... /** @brief Clear all data */ void clear() { fTime.resize(0); boneName.resize(0); parent.resize(0); bind.resize(0, 0); preMulInv.resize(0, 0); rotOrder.resize(0, 0); DemBones::clear(); }

    Any idea? Thx, Max

    opened by mmallmann 1
  • Returning reference to temporary(results in seg fault or undefined behavior)

    Returning reference to temporary(results in seg fault or undefined behavior)

    gcc 7.4.0 reports an warning to this line

    https://github.com/electronicarts/dem-bones/blob/2ab9b0447ad4b8bf4a141b9c65af717e7e2c2e0f/include/DemBones/DemBones.h#L297

    Returning reference to temporary triggers segmentation fault or undefined behavior. Work around is creating an variable.

            VectorX x0 = w.col(i).toDense().cwiseMax(0.0);
            x=indexing_vector(x0, idx.head(nnzi));
    

    Although it is better to fix not returning temp address in Indexing.h

    /home/syoyo/work/dem-bones/include/DemBones/Indexing.h: In instantiation of ‘const typename ArgType::Scalar& Dem::indexing_functor_vector<ArgType, IndexType>::operator()(Eigen::Index) const [with ArgType = Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >; IndexType = Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1>; typename ArgType::Scalar = double; Eigen::Index = long int]’:
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/CoreEvaluators.h:430:110:   required from ‘Scalar Eigen::internal::nullary_wrapper<Scalar, NullaryOp, false, true, false>::operator()(const NullaryOp&, IndexType) const [with IndexType = long int; Scalar = double; NullaryOp = Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/CoreEvaluators.h:533:37:   required from ‘Eigen::internal::evaluator<Eigen::CwiseNullaryOp<NullaryOp, PlainObjectType> >::CoeffReturnType Eigen::internal::evaluator<Eigen::CwiseNullaryOp<NullaryOp, PlainObjectType> >::coeff(IndexType) const [with IndexType = long int; NullaryOp = Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >; PlainObjectType = Eigen::Matrix<double, -1, 1>; Eigen::internal::evaluator<Eigen::CwiseNullaryOp<NullaryOp, PlainObjectType> >::CoeffReturnType = double]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/AssignEvaluator.h:642:5:   required from ‘void Eigen::internal::generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>::assignCoeff(Eigen::Index) [with DstEvaluatorTypeT = Eigen::internal::evaluator<Eigen::Matrix<double, -1, 1> >; SrcEvaluatorTypeT = Eigen::internal::evaluator<Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> > >; Functor = Eigen::internal::assign_op<double, double>; int Version = 0; Eigen::Index = long int]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/AssignEvaluator.h:501:7:   required from ‘static void Eigen::internal::dense_assignment_loop<Kernel, 1, 0>::run(Kernel&) [with Kernel = Eigen::internal::generic_dense_assignment_kernel<Eigen::internal::evaluator<Eigen::Matrix<double, -1, 1> >, Eigen::internal::evaluator<Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> > >, Eigen::internal::assign_op<double, double>, 0>]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/AssignEvaluator.h:767:37:   required from ‘void Eigen::internal::call_dense_assignment_loop(DstXprType&, const SrcXprType&, const Functor&) [with DstXprType = Eigen::Matrix<double, -1, 1>; SrcXprType = Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> >; Functor = Eigen::internal::assign_op<double, double>]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/AssignEvaluator.h:926:31:   [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ]
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/AssignEvaluator.h:808:18:   required from ‘void Eigen::internal::call_assignment(Dst&, const Src&) [with Dst = Eigen::Matrix<double, -1, 1>; Src = Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> >]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/PlainObjectBase.h:779:32:   required from ‘Derived& Eigen::PlainObjectBase<Derived>::_set(const Eigen::DenseBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> >; Derived = Eigen::Matrix<double, -1, 1>]’
    /home/syoyo/work/dem-bones/ExtLibs/Eigen/Eigen/src/Core/Matrix.h:225:24:   required from ‘Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::operator=(const Eigen::DenseBase<OtherDerived>&) [with OtherDerived = Eigen::CwiseNullaryOp<Dem::indexing_functor_vector<Eigen::CwiseBinaryOp<Eigen::internal::scalar_max_op<double, double>, const Eigen::Matrix<double, -1, 1>, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<double>, Eigen::Matrix<double, -1, 1> > >, Eigen::VectorBlock<Eigen::Array<int, -1, 1>, -1> >, Eigen::Matrix<double, -1, 1> >; _Scalar = double; int _Rows = -1; int _Cols = 1; int _Options = 0; int _MaxRows = -1; int _MaxCols = 1]’
    /home/syoyo/work/dem-bones/include/DemBones/DemBones.h:303:6:   required from ‘void Dem::DemBones<_Scalar, _AniMeshScalar>::computeWeights() [with _Scalar = double; _AniMeshScalar = float]’
    /home/syoyo/work/dem-bones/include/DemBones/DemBones.h:344:18:   required from ‘void Dem::DemBones<_Scalar, _AniMeshScalar>::compute() [with _Scalar = double; _AniMeshScalar = float]’
    /home/syoyo/work/dem-bones/src/command/mainCmd.cpp:171:16:   required from here
    /home/syoyo/work/dem-bones/include/DemBones/Indexing.h:106:30: warning: returning reference to temporary [-Wreturn-local-addr]
       return m_arg(m_indices[idx]);
    
    opened by syoyo 1
  • 20 bones are generated in the setting, but 1 bone is actually generated

    20 bones are generated in the setting, but 1 bone is actually generated

    企业微信截图_16717911703795

    Initializing bones: 1>1 Only 1 bone was generated in .fbx file Is there anything not set? How to generate 20 bones normally。 Looking forward to your reply

    opened by Wyhzxc 0
  • Patience & Tolerance values hard-coded to 3 and 1e-3 respectively

    Patience & Tolerance values hard-coded to 3 and 1e-3 respectively

    In class MyDemBones of mainCmd.cpp, the member variables tolerance and patience are initialized to (1e-3) and (3).

    However, these values are never updated to those passed in via the command line.

    It looks like the following lines must be added to the main function to ensure that the user-provided arguments are being respected:

    model.tolerance = dbOptions.tolerance;
    model.patience = dbOptions.patience;
    
    opened by RajatG-SideFX 0
  • Can it decompose multi sequences with the same initial pose in the meantime?

    Can it decompose multi sequences with the same initial pose in the meantime?

    I have some .abc files and the init pose .fbx.

    Do I need to concatenate all the motion sequences into one .abc file? or I can use some scripts to decompose multi sequences in the meantime?

    opened by kunkun0w0 0
  • Weird Composition Result

    Weird Composition Result

    image

    The script I used: call "../bin/Windows/DemBones.exe" -i="dress.fbx" -a="dress_shape00_01_01.abc" -b=40 -o="dress_40.fbx" -n=100 --nWeightsIters=3 -z=8

    The decomposition result looks terrible. Can you give some suggestions?

    image

    opened by kunkun0w0 0
  • Animation of the skeleton fitted to mesh animation with only rotation change in each keyframe

    Animation of the skeleton fitted to mesh animation with only rotation change in each keyframe

    Hi, First, I want to say that I'm very impressed with DemBones solution and its possibilities. I'm wondering if it is possible to obtain the output animation of the RIG with changed only the rotation in the joints (translation would be only applied to the root). From the documentation of the parameters, it is not obvious to me how to achieve this. There is a demLockparameter, but it seems to lock the whole transformation of the joint in the animation.

    opened by ArcaneShadow82 8
  • The dem bones llvm library  executable not working on M1 Macbooks

    The dem bones llvm library executable not working on M1 Macbooks

    The issue is as :

    [email protected] MacOS % ./dembones -a=a.abc -i=a.fbx -o=out.fbx -b=16 dyld: Library not loaded: /usr/local/opt/llvm/lib/libomp.dylib Referenced from: /Users/mac/Desktop/dem-bones-1.2.0/bin/MacOS/./dembones Reason: no suitable image found. Did find: /usr/local/opt/llvm/lib/libomp.dylib: mach-o, but wrong architecture /usr/local/opt/llvm/lib/libomp.dylib: mach-o, but wrong architecture zsh: abort ./dembones -a=a.abc -i=a.fbx -o=out.fbx -b=16

    opened by Tekh-ops 2
Releases(v1.2.1)
  • v1.2.1(Jun 17, 2021)

  • v1.2.0(Jul 21, 2020)

    • Add stop on convergence to cbIterEnd(), cbWeightsIterEnd(), cbTransformationsIterEnd()
    • Add --bindUpdate=2 flag in the command line tool to group joints
    • Add --tolerance and --patience flags in the command line tool using cbIterEnd()
    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Jul 9, 2020)

    • Add per-bone transformation hard-lock and per-vertex weights soft-lock
    • Fix initialization issue on cluster splitting
    • Support joint orientation in command line tools
    • Add command line tool for Linux
    • FBXSDK 2020, Alembic (from Maya 2020 DevKit)
    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Jun 18, 2020)

  • v1.0.0(Jun 18, 2020)

Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023