Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Overview

Class-Balanced Loss Based on Effective Number of Samples

Tensorflow code for the paper:

Class-Balanced Loss Based on Effective Number of Samples
Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, Serge Belongie

Dependencies:

  • Python (3.6)
  • Tensorflow (1.14)

Datasets:

  • Long-Tailed CIFAR. We provide a download link that includes all the data used in our paper in .tfrecords format. The data was converted and generated by src/generate_cifar_tfrecords.py (original CIFAR) and src/generate_cifar_tfrecords_im.py (long-tailed CIFAR).

Effective Number of Samples:

For a visualization of the data and effective number of samples, please take a look at data.ipynb.

Key Implementation Details:

Training and Evaluation:

We provide 3 .sh scripts for training and evaluation.

  • On original CIFAR dataset:
./cifar_trainval.sh
  • On long-tailed CIFAR dataset (the hyperparameter IM_FACTOR is the inverse of "Imbalance Factor" in the paper):
./cifar_im_trainval.sh
  • On long-tailed CIFAR dataset using the proposed class-balanced loss (set non-zero BETA):
./cifar_im_trainval_cb.sh
  • Run Tensorboard for visualization:
tensorboard --logdir=./results --port=6006
  • The figure below are the results of running ./cifar_im_trainval.sh and ./cifar_im_trainval_cb.sh:

Training with TPU:

We train networks on iNaturalist and ImageNet datasets using Google's Cloud TPU. The code for this section is in tpu/. Our code is based on the official implementation of Training ResNet on Cloud TPU and forked from https://github.com/tensorflow/tpu.

Data Preparation:

  • Download datasets (except images) from this link and unzip it under tpu/. The unzipped directory tpu/raw_data/ contains the training and validation splits. For raw images, please download from the following links and put them into the corresponding folders in tpu/raw_data/:

  • Convert datasets into .tfrecords format and upload to Google Cloud Storage (gcs) using tpu/tools/datasets/dataset_to_gcs.py:

python dataset_to_gcs.py \
  --project=$PROJECT \
  --gcs_output_path=$GCS_DATA_DIR \
  --local_scratch_dir=$LOCAL_TFRECORD_DIR \
  --raw_data_dir=$LOCAL_RAWDATA_DIR

The following 3 .sh scripts in tpu/ can be used to train and evaluate models on iNaturalist and ImageNet using Cloud TPU. For more details on how to use Cloud TPU, please refer to Training ResNet on Cloud TPU.

Note that the image mean and standard deviation and input size need to be updated accordingly.

  • On ImageNet (ILSVRC 2012):
./run_ILSVRC2012.sh
  • On iNaturalist 2017:
./run_inat2017.sh
  • On iNaturalist 2018:
./run_inat2018.sh
  • The pre-trained models, including all logs viewable on tensorboard, can be downloaded from the following links:
Dataset Network Loss Input Size Download Link
ILSVRC 2012 ResNet-50 Class-Balanced Focal Loss 224 link
iNaturalist 2018 ResNet-50 Class-Balanced Focal Loss 224 link

Citation

If you find our work helpful in your research, please cite it as:

@inproceedings{cui2019classbalancedloss,
  title={Class-Balanced Loss Based on Effective Number of Samples},
  author={Cui, Yin and Jia, Menglin and Lin, Tsung-Yi and Song, Yang and Belongie, Serge},
  booktitle={CVPR},
  year={2019}
}
Owner
Yin Cui
Research Scientist at Google
Yin Cui
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021