A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Overview

Differentiable SVD

Introduction

This repository contains:

  1. The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?
  2. A collection of differentiable SVD methods utilized in our paper.

You can also find the presentation of our work via the slides and via the poster.

About the paper

In this paper, we investigate the reason behind why approximate matrix square root calculated via Newton-Schulz iteration outperform the accurate ones computed by SVD from the perspectives of data precision and gradient smoothness. Various remedies for computing smooth SVD gradients are investigated. We also propose a new spectral meta-layer that uses SVD in the forward pass, and Pad'e approximants in the backward propagation to compute the gradients. The results of the so-called SVD-Pad'e achieve state-of-the-art results on ImageNet and FGVC datasets.

Differentiable SVD Methods

As the backward algorithm of SVD is prone to have numerical instability, we implement a variety of end-to-end SVD methods by manipulating the backward algortihms in this repository. They include:

  • SVD-Pad'e: use Pad'e approximants to closely approximate the gradient. It is proposed in our ICCV21 paper.
  • SVD-Taylor: use Taylor polynomial to approximate the smooth gradient. It is proposed in our ICCV21 paper and the TPAMI journal.
  • SVD-PI: use Power Iteration (PI) to approximate the gradients. It is proposed in the NeurIPS19 paper.
  • SVD-Newton: use the gradient of the Newton-Schulz iteration.
  • SVD-Trunc: set a upper limit of the gradient and apply truncation.
  • SVD-TopN: select the Top-N eigenvalues and abandon the rest.
  • SVD-Original: ordinary SVD with gradient overflow check.

In the task of global covaraince pooling, the SVD-Pad'e achieves the best performances. You are free to try other methods in your research.

Implementation and Usage

The codes is modifed on the basis of iSQRT-COV.

See the requirements.txt for the specific required packages.

To train AlexNet on ImageNet, choose a spectral meta-layer in the script and run:

CUDA_VISIBLE_DEVICES=0,1 bash train_alexnet.sh

The pre-trained models of ResNet-50 with SVD-Pad'e is available via Google Drive. You can load the state dict by:

model.load_state_dict(torch.load('pade_resnet50.pth.tar'))

Citation

If you think the codes is helpful to your research, please consider citing our paper:

@inproceedings{song2021approximate,
  title={Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?},
  author={Song, Yue and Sebe, Nicu and Wang, Wei},
  booktitle={ICCV},
  year={2021}
}

Contact

If you have any questions or suggestions, please feel free to contact me

[email protected]

Owner
YueSong
Ph.D. student in Computer Vision
YueSong
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022