A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Overview

Differentiable SVD

Introduction

This repository contains:

  1. The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?
  2. A collection of differentiable SVD methods utilized in our paper.

You can also find the presentation of our work via the slides and via the poster.

About the paper

In this paper, we investigate the reason behind why approximate matrix square root calculated via Newton-Schulz iteration outperform the accurate ones computed by SVD from the perspectives of data precision and gradient smoothness. Various remedies for computing smooth SVD gradients are investigated. We also propose a new spectral meta-layer that uses SVD in the forward pass, and Pad'e approximants in the backward propagation to compute the gradients. The results of the so-called SVD-Pad'e achieve state-of-the-art results on ImageNet and FGVC datasets.

Differentiable SVD Methods

As the backward algorithm of SVD is prone to have numerical instability, we implement a variety of end-to-end SVD methods by manipulating the backward algortihms in this repository. They include:

  • SVD-Pad'e: use Pad'e approximants to closely approximate the gradient. It is proposed in our ICCV21 paper.
  • SVD-Taylor: use Taylor polynomial to approximate the smooth gradient. It is proposed in our ICCV21 paper and the TPAMI journal.
  • SVD-PI: use Power Iteration (PI) to approximate the gradients. It is proposed in the NeurIPS19 paper.
  • SVD-Newton: use the gradient of the Newton-Schulz iteration.
  • SVD-Trunc: set a upper limit of the gradient and apply truncation.
  • SVD-TopN: select the Top-N eigenvalues and abandon the rest.
  • SVD-Original: ordinary SVD with gradient overflow check.

In the task of global covaraince pooling, the SVD-Pad'e achieves the best performances. You are free to try other methods in your research.

Implementation and Usage

The codes is modifed on the basis of iSQRT-COV.

See the requirements.txt for the specific required packages.

To train AlexNet on ImageNet, choose a spectral meta-layer in the script and run:

CUDA_VISIBLE_DEVICES=0,1 bash train_alexnet.sh

The pre-trained models of ResNet-50 with SVD-Pad'e is available via Google Drive. You can load the state dict by:

model.load_state_dict(torch.load('pade_resnet50.pth.tar'))

Citation

If you think the codes is helpful to your research, please consider citing our paper:

@inproceedings{song2021approximate,
  title={Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?},
  author={Song, Yue and Sebe, Nicu and Wang, Wei},
  booktitle={ICCV},
  year={2021}
}

Contact

If you have any questions or suggestions, please feel free to contact me

[email protected]

Owner
YueSong
Ph.D. student in Computer Vision
YueSong
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022