Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

Overview

VCN: Volumetric correspondence networks for optical flow

[project website]

Requirements

Pre-trained models

To test on any two images

Running visualize.ipynb gives you the following flow visualizations with color and vectors. Note: the sintel model "./weights/sintel-ft-trainval/finetune_67999.tar" is trained on multiple datasets and generalizes better than the KITTI model.

KITTI

This correspondens to the entry on the leaderboard (Fl-all=6.30%).

Evaluate on KITTI-15 benchmark

To run + visualize on KITTI-15 test set,

modelname=kitti-ft-trainval
i=149999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset 2015test --datapath dataset/kitti_scene/testing/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 512 --fac 2
python eval_tmp.py --path ./weights/$modelname/ --vis yes --dataset 2015test
Evaluate on KITTI-val

To see the details of the train-val split, please scroll down to "note on train-val" and run dataloader/kitti15list_val.py, dataloader/kitti15list_train.py, dataloader/sitnellist_train.py, and dataloader/sintellist_val.py.

To evaluate on the 40 validation images of KITTI-15 (0,5,...195), (also assuming the data is at /ssd/kitti_scene)

modelname=kitti-ft-trainval
i=149999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset 2015 --datapath /ssd/kitti_scene/training/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 512 --fac 2
python eval_tmp.py --path ./weights/$modelname/ --vis no --dataset 2015

To evaluate + visualize on KITTI-15 validation set,

python eval_tmp.py --path ./weights/$modelname/ --vis yes --dataset 2015

Evaluation error on 40 validation images : Fl-err = 3.9, EPE = 1.144

Sintel

This correspondens to the entry on the leaderboard (EPE-all-final = 4.404, EPE-all-clean = 2.808).

Evaluate on Sintel-val

To evaluate on Sintel validation set,

modelname=sintel-ft-trainval
i=67999
CUDA_VISIBLE_DEVICES=0 python submission.py --dataset sintel --datapath /ssd/rob_flow/training/   --outdir ./weights/$modelname/ --loadmodel ./weights/$modelname/finetune_$i.tar  --maxdisp 448 --fac 1.4
python eval_tmp.py --path ./weights/$modelname/ --vis no --dataset sintel

Evaluation error on sintel validation images: Fl-err = 7.9, EPE = 2.351

Train the model

We follow the same stage-wise training procedure as prior work: Chairs->Things->KITTI or Chairs->Things->Sintel, but uses much lesser iterations. If you plan to train the model and reproduce the numbers, please check out our supplementary material for the differences in hyper-parameters with FlowNet2 and PWCNet.

Pretrain on flying chairs and flying things

Make sure you have downloaded flying chairs and flying things subset, and placed them under the same folder, say /ssd/.

To first train on flying chairs for 140k iterations with a batchsize of 8, run (assuming you have two gpus)

CUDA_VISIBLE_DEVICES=0,1 python main.py --maxdisp 256 --fac 1 --database /ssd/ --logname chairs-0 --savemodel /data/ptmodel/  --epochs 1000 --stage chairs --ngpus 2

Then we want to fine-tune on flying things for 80k iterations with a batchsize of 8, resume from your pre-trained model or use our pretrained model

CUDA_VISIBLE_DEVICES=0,1 python main.py --maxdisp 256 --fac 1 --database /ssd/ --logname things-0 --savemodel /data/ptmodel/  --epochs 1000 --stage things --ngpus 2 --loadmodel ./weights/charis/finetune_141999.tar --retrain false

Note that to resume the number of iterations, put the iteration to start from in iter_counts-(your suffix).txt. In this example, I'll put 141999 in iter_counts-0.txt. Be aware that the program reads/writes to iter_counts-(suffix).txt at training time, so you may want to use different suffix when multiple training programs are running at the same time.

Finetune on KITTI / Sintel

Please first download the kitti 2012/2015 flow dataset if you want to fine-tune on kitti. Download rob_devkit if you want to fine-tune on sintel.

To fine-tune on KITTI with a batchsize of 16, run

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --maxdisp 512 --fac 2 --database /ssd/ --logname kitti-trainval-0 --savemodel /data/ptmodel/  --epochs 1000 --stage 2015trainval --ngpus 4 --loadmodel ./weights/things/finetune_211999.tar --retrain true

To fine-tune on Sintel with a batchsize of 16, run

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --maxdisp 448 --fac 1.4 --database /ssd/ --logname sintel-trainval-0 --savemodel /data/ptmodel/  --epochs 1000 --stage sinteltrainval --ngpus 4 --loadmodel ./weights/things/finetune_239999.tar --retrain true

Note on train-val

  • To tune hyper-parameters, we use a train-val split for kitti and sintel, which is not covered by the above procedure.
  • For kitti we use every 5th image in the training set (0,5,10,...195) for validation, and the rest for training; while for Sintel, we manually select several sequences for validation.
  • If you plan to use our split, put "--stage 2015train" or "--stage sinteltrain" for training.
  • The numbers in Tab.3 of the paper is on the whole train-val set (all the data with ground-truth).
  • You might find run.sh helpful to run evaluation on KITTI/Sintel.

Measure FLOPS

python flops.py

gives

PWCNet: flops(G)/params(M):90.8/9.37

VCN: flops(G)/params(M):96.5/6.23

Note on inference time

The current implementation runs at 180ms/pair on KITTI-sized images at inference time. A rough breakdown of running time is: feature extraction - 4.9%, feature correlation - 8.7%, separable 4D convolutions - 56%, trun. soft-argmin (soft winner-take-all) - 20% and hypotheses fusion - 9.5%. A detailed breakdown is shown below in the form "name-level percentage".

Note that separable 4D convolutions use less FLOPS than 2D convolutions (i.e., feature extraction module + hypotheses fusion module, 47.8 v.s. 53.3 Gflops) but take 4X more time (56% v.s. 14.4%). One reason might be that pytorch (also other packages) is more friendly to networks with more feature channels than those with large spatial size given the same Flops. This might be fixed at the conv kernel / hardware level.

Besides, the truncated soft-argmin is implemented with 3D max pooling, which is inefficient and takes more time than expected.

Acknowledgement

Thanks ClementPinard, Lyken17, NVlabs and many others for open-sourcing their code.

Citation

@inproceedings{yang2019vcn,
  title={Volumetric Correspondence Networks for Optical Flow},
  author={Yang, Gengshan and Ramanan, Deva},
  booktitle={NeurIPS},
  year={2019}
}
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaƫl Fijalkow 24 Oct 23, 2022