Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Related tags

Deep Learningsiren
Overview

Implicit Neural Representations with Periodic Activation Functions

Project Page | Paper | Data

Explore Siren in Colab

Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
Stanford University, *denotes equal contribution

This is the official implementation of the paper "Implicit Neural Representations with Periodic Activation Functions".

siren_video

Google Colab

If you want to experiment with Siren, we have written a Colab. It's quite comprehensive and comes with a no-frills, drop-in implementation of SIREN. It doesn't require installing anything, and goes through the following experiments / SIREN properties:

  • Fitting an image
  • Fitting an audio signal
  • Solving Poisson's equation
  • Initialization scheme & distribution of activations
  • Distribution of activations is shift-invariant
  • Periodicity & behavior outside of the training range.

Tensorflow Playground

You can also play arond with a tiny SIREN interactively, directly in the browser, via the Tensorflow Playground here. Thanks to David Cato for implementing this!

Get started

If you want to reproduce all the results (including the baselines) shown in the paper, the videos, point clouds, and audio files can be found here.

You can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • training.py contains a generic training routine.
  • modules.py contains layers and full neural network modules.
  • meta_modules.py contains hypernetwork code.
  • utils.py contains utility functions, most promintently related to the writing of Tensorboard summaries.
  • diff_operators.py contains implementations of differential operators.
  • loss_functions.py contains loss functions for the different experiments.
  • make_figures.py contains helper functions to create the convergence videos shown in the video.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

To monitor progress, the training code writes tensorboard summaries into a "summaries"" subdirectory in the logging_root.

Image experiments

The image experiment can be reproduced with

python experiment_scripts/train_img.py --model_type=sine

The figures in the paper were made by extracting images from the tensorboard summaries. Example code how to do this can be found in the make_figures.py script.

Audio experiments

This github repository comes with both the "counting" and "bach" audio clips under ./data.

They can be trained with

python experiment_scipts/train_audio.py --model_type=sine --wav_path=<path_to_audio_file>

Video experiments

The "bikes" video sequence comes with scikit-video and need not be downloaded. The cat video can be downloaded with the link above.

To fit a model to a video, run

python experiment_scipts/train_video.py --model_type=sine --experiment_name bikes_video

Poisson experiments

For the poisson experiments, there are three separate scripts: One for reconstructing an image from its gradients (train_poisson_grad_img.py), from its laplacian (train_poisson_lapl_image.py), and to combine two images (train_poisson_gradcomp_img.py).

Some of the experiments were run using the BSD500 datast, which you can download here.

SDF Experiments

To fit a Signed Distance Function (SDF) with SIREN, you first need a pointcloud in .xyz format that includes surface normals. If you only have a mesh / ply file, this can be accomplished with the open-source tool Meshlab.

To reproduce our results, we provide both models of the Thai Statue from the 3D Stanford model repository and the living room used in our paper for download here.

To start training a SIREN, run:

python experiments_scripts/train_single_sdf.py --model_type=sine --point_cloud_path=<path_to_the_model_in_xyz_format> --batch_size=250000 --experiment_name=experiment_1

This will regularly save checkpoints in the directory specified by the rootpath in the script, in a subdirectory "experiment_1". The batch_size is typically adjusted to fit in the entire memory of your GPU. Our experiments show that with a 256, 3 hidden layer SIREN one can set the batch size between 230-250'000 for a NVidia GPU with 12GB memory.

To inspect a SDF fitted to a 3D point cloud, we now need to create a mesh from the zero-level set of the SDF. This is performed with another script that uses a marching cubes algorithm (adapted from the DeepSDF github repo) and creates the mesh saved in a .ply file format. It can be called with:

python experiments_scripts/test_single_sdf.py --checkpoint_path=<path_to_the_checkpoint_of_the_trained_model> --experiment_name=experiment_1_rec 

This will save the .ply file as "reconstruction.ply" in "experiment_1_rec" (be patient, the marching cube meshing step takes some time ;) ) In the event the machine you use for the reconstruction does not have enough RAM, running test_sdf script will likely freeze. If this is the case, please use the option --resolution=512 in the command line above (set to 1600 by default) that will reconstruct the mesh at a lower spatial resolution.

The .ply file can be visualized using a software such as Meshlab (a cross-platform visualizer and editor for 3D models).

Helmholtz and wave equation experiments

The helmholtz and wave equation experiments can be reproduced with the train_wave_equation.py and train_helmholtz.py scripts.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks. We realized that there is a technical report, which we forgot to cite - it'll make it into the camera-ready version!

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2019siren,
    author = {Sitzmann, Vincent
              and Martel, Julien N.P.
              and Bergman, Alexander W.
              and Lindell, David B.
              and Wetzstein, Gordon},
    title = {Implicit Neural Representations
              with Periodic Activation Functions},
    booktitle = {arXiv},
    year={2020}
}

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023