Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Related tags

Deep Learningsiren
Overview

Implicit Neural Representations with Periodic Activation Functions

Project Page | Paper | Data

Explore Siren in Colab

Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
Stanford University, *denotes equal contribution

This is the official implementation of the paper "Implicit Neural Representations with Periodic Activation Functions".

siren_video

Google Colab

If you want to experiment with Siren, we have written a Colab. It's quite comprehensive and comes with a no-frills, drop-in implementation of SIREN. It doesn't require installing anything, and goes through the following experiments / SIREN properties:

  • Fitting an image
  • Fitting an audio signal
  • Solving Poisson's equation
  • Initialization scheme & distribution of activations
  • Distribution of activations is shift-invariant
  • Periodicity & behavior outside of the training range.

Tensorflow Playground

You can also play arond with a tiny SIREN interactively, directly in the browser, via the Tensorflow Playground here. Thanks to David Cato for implementing this!

Get started

If you want to reproduce all the results (including the baselines) shown in the paper, the videos, point clouds, and audio files can be found here.

You can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • training.py contains a generic training routine.
  • modules.py contains layers and full neural network modules.
  • meta_modules.py contains hypernetwork code.
  • utils.py contains utility functions, most promintently related to the writing of Tensorboard summaries.
  • diff_operators.py contains implementations of differential operators.
  • loss_functions.py contains loss functions for the different experiments.
  • make_figures.py contains helper functions to create the convergence videos shown in the video.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

To monitor progress, the training code writes tensorboard summaries into a "summaries"" subdirectory in the logging_root.

Image experiments

The image experiment can be reproduced with

python experiment_scripts/train_img.py --model_type=sine

The figures in the paper were made by extracting images from the tensorboard summaries. Example code how to do this can be found in the make_figures.py script.

Audio experiments

This github repository comes with both the "counting" and "bach" audio clips under ./data.

They can be trained with

python experiment_scipts/train_audio.py --model_type=sine --wav_path=<path_to_audio_file>

Video experiments

The "bikes" video sequence comes with scikit-video and need not be downloaded. The cat video can be downloaded with the link above.

To fit a model to a video, run

python experiment_scipts/train_video.py --model_type=sine --experiment_name bikes_video

Poisson experiments

For the poisson experiments, there are three separate scripts: One for reconstructing an image from its gradients (train_poisson_grad_img.py), from its laplacian (train_poisson_lapl_image.py), and to combine two images (train_poisson_gradcomp_img.py).

Some of the experiments were run using the BSD500 datast, which you can download here.

SDF Experiments

To fit a Signed Distance Function (SDF) with SIREN, you first need a pointcloud in .xyz format that includes surface normals. If you only have a mesh / ply file, this can be accomplished with the open-source tool Meshlab.

To reproduce our results, we provide both models of the Thai Statue from the 3D Stanford model repository and the living room used in our paper for download here.

To start training a SIREN, run:

python experiments_scripts/train_single_sdf.py --model_type=sine --point_cloud_path=<path_to_the_model_in_xyz_format> --batch_size=250000 --experiment_name=experiment_1

This will regularly save checkpoints in the directory specified by the rootpath in the script, in a subdirectory "experiment_1". The batch_size is typically adjusted to fit in the entire memory of your GPU. Our experiments show that with a 256, 3 hidden layer SIREN one can set the batch size between 230-250'000 for a NVidia GPU with 12GB memory.

To inspect a SDF fitted to a 3D point cloud, we now need to create a mesh from the zero-level set of the SDF. This is performed with another script that uses a marching cubes algorithm (adapted from the DeepSDF github repo) and creates the mesh saved in a .ply file format. It can be called with:

python experiments_scripts/test_single_sdf.py --checkpoint_path=<path_to_the_checkpoint_of_the_trained_model> --experiment_name=experiment_1_rec 

This will save the .ply file as "reconstruction.ply" in "experiment_1_rec" (be patient, the marching cube meshing step takes some time ;) ) In the event the machine you use for the reconstruction does not have enough RAM, running test_sdf script will likely freeze. If this is the case, please use the option --resolution=512 in the command line above (set to 1600 by default) that will reconstruct the mesh at a lower spatial resolution.

The .ply file can be visualized using a software such as Meshlab (a cross-platform visualizer and editor for 3D models).

Helmholtz and wave equation experiments

The helmholtz and wave equation experiments can be reproduced with the train_wave_equation.py and train_helmholtz.py scripts.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks. We realized that there is a technical report, which we forgot to cite - it'll make it into the camera-ready version!

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2019siren,
    author = {Sitzmann, Vincent
              and Martel, Julien N.P.
              and Bergman, Alexander W.
              and Lindell, David B.
              and Wetzstein, Gordon},
    title = {Implicit Neural Representations
              with Periodic Activation Functions},
    booktitle = {arXiv},
    year={2020}
}

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022