A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

Overview

R-YOLOv4

This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection. (Final project for NCKU INTRODUCTION TO ARTIFICIAL INTELLIGENCE course)

Introduction

The objective of this project is to adapt YOLOv4 model to detecting oriented objects. As a result, modifying the original loss function of the model is required. I got a successful result by increasing the number of anchor boxes with different rotating angle and combining smooth-L1-IoU loss function proposed by R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object into the original loss for bounding boxes.

Features


Loss Function (only for x, y, w, h, theta)

loss

angle


Scheduler

Cosine Annealing with Warmup (Reference: Cosine Annealing with Warmup for PyTorch)
scheduler


Recall

recall

As the paper suggested, I get a better results from **f(ariou) = exp(1-ariou)-1**. Therefore I used it for my loss function.

Usage

  1. Clone and Setup Environment

    $ git clone https://github.com/kunnnnethan/R-YOLOv4.git
    $ cd R-YOLOv4/
    

    Create Conda Environment

    $ conda env create -f environment.yml
    

    Create Python Virtual Environment

    $ python3.8 -m venv (your environment name)
    $ source ~/your-environment-name/bin/activate
    $ pip3 install torch torchvision torchaudio
    $ pip install -r requirements.txt
    
  2. Download pretrained weights
    weights

  3. Make sure your files arrangment looks like the following
    Note that each of your dataset folder in data should split into three files, namely train, test, and detect.

    R-YOLOv4/
    ├── train.py
    ├── test.py
    ├── detect.py
    ├── xml2txt.py
    ├── environment.xml
    ├── requirements.txt
    ├── model/
    ├── datasets/
    ├── lib/
    ├── outputs/
    ├── weights/
        ├── pretrained/ (for training)
        └── UCAS-AOD/ (for testing and detection)
    └── data/
        └── UCAS-AOD/
            ├── class.names
            ├── train/
                ├── ...png
                └── ...txt
            ├── test/
                ├── ...png
                └── ...txt
            └── detect/
                └── ...png
    
  4. Train, Test, and Detect
    Please refer to lib/options.py to check out all the arguments.

Train

I have implemented methods to load and train three different datasets. They are UCAS-AOD, DOTA, and custom dataset respectively. You can check out how I loaded those dataset into the model at /datasets. The angle of each bounding box is limited in (- pi/2, pi/2], and the height of each bounding box is always longer than it's width.

You can run experiments/display_inputs.py to visualize whether your data is loaded successfully.

UCAS-AOD dataset

Please refer to this repository to rearrange files so that it can be loaded and trained by this model.
You can download the weight that I trained from UCAS-AOD.

While training, please specify which dataset you are using.
$ python train.py --dataset UCAS_AOD

DOTA dataset

Download the official dataset from here. The original files should be able to be loaded and trained by this model.

While training, please specify which dataset you are using.
$ python train.py --dataset DOTA

Train with custom dataset

  1. Use labelImg2 to help label your data. labelImg2 is capable of labeling rotated objects.
  2. Move your data folder into the R-YOLOv4/data folder.
  3. Run xml2txt.py
    1. generate txt files: python xml2txt.py --data_folder your-path --action gen_txt
    2. delete xml files: python xml2txt.py --data_folder your-path --action del_xml

A trash custom dataset that I made and the weight trained from it are provided for your convenience.

While training, please specify which dataset you are using.
$ python train.py --dataset custom

Training Log

---- [Epoch 2/2] ----
+---------------+--------------------+---------------------+---------------------+----------------------+
| Step: 596/600 | loss               | reg_loss            | conf_loss           | cls_loss             |
+---------------+--------------------+---------------------+---------------------+----------------------+
| YoloLayer1    | 0.4302629232406616 | 0.32991039752960205 | 0.09135108441114426 | 0.009001442231237888 |
| YoloLayer2    | 0.7385762333869934 | 0.5682911276817322  | 0.15651139616966248 | 0.013773750513792038 |
| YoloLayer3    | 1.5002599954605103 | 1.1116538047790527  | 0.36262497305870056 | 0.025981156155467033 |
+---------------+--------------------+---------------------+---------------------+----------------------+
Total Loss: 2.669099, Runtime: 404.888372

Tensorboard

If you would like to use tensorboard for tracking traing process.

  • Open additional terminal in the same folder where you are running program.
  • Run command $ tensorboard --logdir='weights/your_model_name/logs' --port=6006
  • Go to http://localhost:6006/

Results

UCAS_AOD

Method Plane Car mAP
YOLOv4 (smoothL1-iou) 98.05 92.05 95.05

car

plane

DOTA

DOTA have not been tested yet. (It's quite difficult to test because of large resolution of images) DOTADOTA

trash (custom dataset)

Method Plane Car mAP
YOLOv4 (smoothL1-iou) 100.00 100.00 100.00

garbage1

garbage2

TODO

  • Mosaic Augmentation
  • Mixup Augmentation

References

yangxue0827/RotationDetection
eriklindernoren/PyTorch-YOLOv3
Tianxiaomo/pytorch-YOLOv4
ultralytics/yolov5

YOLOv4: Optimal Speed and Accuracy of Object Detection

Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao

Abstract There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets...

@article{yolov4,
  title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
  author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
  journal = {arXiv},
  year={2020}
}

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

Xue Yang, Junchi Yan, Ziming Feng, Tao He

Abstract Rotation detection is a challenging task due to the difficulties of locating the multi-angle objects and separating them effectively from the background. Though considerable progress has been made, for practical settings, there still exist challenges for rotating objects with large aspect ratio, dense distribution and category extremely imbalance. In this paper, we propose an end-to-end refined single-stage rotation detector for fast and accurate object detection by using a progressive regression approach from coarse to fine granularity...

@article{r3det,
  title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
  author={Xue Yang, Junchi Yan, Ziming Feng, Tao He},
  journal = {arXiv},
  year={2019}
}
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022