SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

Overview

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral)

Python 3.7 pytorch 1.2.0 pyqt5 5.13.0

image Figure: Face image editing controlled via style images and segmentation masks with SEAN

We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
Peihao Zhu, Rameen Abdal, Yipeng Qin, Peter Wonka
Computer Vision and Pattern Recognition CVPR 2020, Oral

[Paper] [Project Page] [Demo]

Installation

Clone this repo.

git clone https://github.com/ZPdesu/SEAN.git
cd SEAN/

This code requires PyTorch, python 3+ and Pyqt5. Please install dependencies by

pip install -r requirements.txt

This model requires a lot of memory and time to train. To speed up the training, we recommend using 4 V100 GPUs

Dataset Preparation

This code uses CelebA-HQ and CelebAMask-HQ dataset. The prepared dataset can be directly downloaded here. After unzipping, put the entire CelebA-HQ folder in the datasets folder. The complete directory should look like ./datasets/CelebA-HQ/train/ and ./datasets/CelebA-HQ/test/.

Generating Images Using Pretrained Models

Once the dataset is prepared, the reconstruction results be got using pretrained models.

  1. Create ./checkpoints/ in the main folder and download the tar of the pretrained models from the Google Drive Folder. Save the tar in ./checkpoints/, then run

    cd checkpoints
    tar CelebA-HQ_pretrained.tar.gz
    cd ../
    
  2. Generate the reconstruction results using the pretrained model.

    python test.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  3. The reconstruction images are saved at ./results/CelebA-HQ_pretrained/ and the corresponding style codes are stored at ./styles_test/style_codes/.

  4. Pre-calculate the mean style codes for the UI mode. The mean style codes can be found at ./styles_test/mean_style_code/.

    python calculate_mean_style_code.py

Training New Models

To train the new model, you need to specify the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, and --no_instance to denote the dataset doesn't have instance maps.

python train.py --name [experiment_name] --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/train/labels --image_dir datasets/CelebA-HQ/train/images --label_nc 19 --no_instance --batchSize 32 --gpu_ids 0,1,2,3

If you only have single GPU with small memory, please use --batchSize 2 --gpu_ids 0.

UI Introduction

We provide a convenient UI for the users to do some extension works. To run the UI mode, you need to:

  1. run the step Generating Images Using Pretrained Models to save the style codes of the test images and the mean style codes. Or you can directly download the style codes from here. (Note: if you directly use the downloaded style codes, you have to use the pretrained model.

  2. Put the visualization images of the labels used for generating in ./imgs/colormaps/ and the style images in ./imgs/style_imgs_test/. Some example images are provided in these 2 folders. Note: the visualization image and the style image should be picked from ./datasets/CelebAMask-HQ/test/vis/ and ./datasets/CelebAMask-HQ/test/labels/, because only the style codes of the test images are saved in ./styles_test/style_codes/. If you want to use your own images, please prepare the images, labels and visualization of the labels in ./datasets/CelebAMask-HQ/test/ with the same format, and calculate the corresponding style codes.

  3. Run the UI mode

    python run_UI.py --name CelebA-HQ_pretrained --load_size 256 --crop_size 256 --dataset_mode custom --label_dir datasets/CelebA-HQ/test/labels --image_dir datasets/CelebA-HQ/test/images --label_nc 19 --no_instance --gpu_ids 0
  4. How to use the UI. Please check the detail usage of the UI from our Video.

    image

Other Datasets

Will be released soon.

License

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) The code is released for academic research use only.

Citation

If you use this code for your research, please cite our papers.

@InProceedings{Zhu_2020_CVPR,
author = {Zhu, Peihao and Abdal, Rameen and Qin, Yipeng and Wonka, Peter},
title = {SEAN: Image Synthesis With Semantic Region-Adaptive Normalization},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Acknowledgments

We thank Wamiq Reyaz Para for helpful comments. This code borrows heavily from SPADE. We thank Taesung Park for sharing his codes. This work was supported by the KAUST Office of Sponsored Research (OSR) under AwardNo. OSR-CRG2018-3730.

Owner
Peihao Zhu
CS PhD at KAUST
Peihao Zhu
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023