TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

Overview
Comments
  • abs_depth_error

    abs_depth_error

    I find ABS_DEPTH_ERROR is close to 6 or even 7 during training, is this normal? Here are the training results for Epoch 5. Is it because of the slow convergence?

    avg_test_scalars: {'loss': 4.360309665948113, 'depth_loss': 6.535046514014081, 'entropy_loss': 4.360309665948113, 'abs_depth_error': 6.899323051878795, 'thres2mm_error': 0.16829867261163733, 'thres4mm_error': 0.10954744909229193, 'thres8mm_error': 0.07844322964626443, 'thres14mm_error': 0.06323695212957076, 'thres20mm_error': 0.055751020700780536, 'thres2mm_abserror': 0.597563438798779, 'thres4mm_abserror': 2.7356186663791666, 'thres8mm_abserror': 5.608324628466483, 'thres14mm_abserror': 10.510002394554125, 'thres20mm_abserror': 16.67409769420184, 'thres>20mm_abserror': 78.15814284054947}

    opened by zhang-snowy 7
  • About the fusion setting in DTU

    About the fusion setting in DTU

    Thank you for your great contribution. The script use the gipuma as the fusion method with num_consistent=5prob_threshold=0.05disp_threshold=0.25. However, it produces point cloud results with only 1/2 points compared with the point cloud results you provide in DTU, leading to a much poorer result in DTU. Is there any setting wrong in the script? Or because it does not use the dynamic fusion method described in the paper. Could you provide the dynamic fusion process in DTU?

    opened by DIVE128 5
  • Testing on TnT advanced dataset

    Testing on TnT advanced dataset

    Hi, thank you for sharing this great work!

    I'm try to test transmvsnet on tnt advanced dataset, but meet some problem. My test environment is ubuntu16.04 with cuda11.3 and pytorch 1.10.

    The first thing is that there is no cams_1 folder under tnt dataset, is it a revised version of original cams folder or you just changed the folder name?

    I just changed the folder name, then run scripts/test_tnt.sh, but I find the speed is rather slow, about 10 seconds on 1080ti for a image (1056 x 1920), is it normal?

    Finally I get the fused point cloud, but the cloud is meaningless, I checked the depth map and confidence map, all of the data are very strange, apperantly not right.

    Can you help me with these problems?

    opened by CanCanZeng 4
  • Some implement details about the paper

    Some implement details about the paper

    Firstly thanks for your paper and I'm looking forward to your open-sourced code.

    And I have some questions about your paper: (Hopefully you can reply, thanks in advance!) (1) In section 4.2, "The model is trained with Adam for 10 epochs with an initial learning rate of 0.001, which decays by a factor of 0.5 respectively after 6, 8, and 12 epochs." I'm confused about the epochs. And I also noticed that this training strategy is different from CasMVSNet. Did you try the training strategy in CasMVSNet? What's the difference? (2) In Table4(b), focal loss(what is the value of \gamma?) suppresses CE loss by 0.06. However, In Table4(e) and Table 6, we infer that the best model use CE loss(FL with \gamma=0). My question is: did you keep Focal loss \gamma unchanged in the Ablation study in Table4? If not, how \gamma changes? Could you elaborate?

    Really appreciate it!

    opened by JeffWang987 4
  • source code

    source code

    Hi, @Lxiangyue Thank you for the nice paper.

    It's been over a month since authors announced that the code will be available. May I know when the code will be released? (or whether it will not be released)

    opened by Ys-Jung77 3
  • Testing on my own dataset

    Testing on my own dataset

    Hi thanks for your interesting work. I tested your code on one of the DTU dataset (Moda). as you can see from the following image, the results are quite well. image

    but I got a very bad result, when i tried to tested on one of my dataset (see the following pic) using your pretrained model (model_dtu). Now, my question is that do you thing that the object is too complicated and different compared to DTU dataset and it is all we can get from the pretrain model without retraining it? is it possible to improve by changing the input parameters? In general, would you please share your opinion about this result? image

    opened by AliKaramiFBK 1
  • generate dense 3D point cloud

    generate dense 3D point cloud

    thanks for your greate work I just tried to do a test on DTU testing dataset I got the depth map for each view but I got a bit confised on how to generate 3D point cloud using your code would you please let me know Best

    opened by AliKaramiFBK 1
  • GPU memory consumption

    GPU memory consumption

    Hi! Thanks for your excellent work! When I tested on the DTU dataset with pretrained model, the gpu memory consumption is 4439MB, but the paper gives 3778MB.

    I do not know where the problem is.

    opened by JianfeiJ 0
  • Using my own data

    Using my own data

    If I have the intrinsic matrics and extrinsic matrics of cameras, which means I don't need to run SFM in COLMAP, how should I struct my data to train the model?

    opened by PaperDollssss 2
  • TnT dataset results

    TnT dataset results

    Thanks for the great job. I follow the instruction and upload the reconstruction result of tnt but find the F-score=60.29, and I find the point cloud sizes are a larger than the upload ones. Whether the reconstructed point cloud use the param settting of test_tnt.sh or it should be tuned manually? :smile:

    opened by CC9310 1
  • TankAndTemple Test

    TankAndTemple Test

    Hi, 我测试了TAT数据集中的Family,使用的是默认脚本test_tnt.sh,采用normal融合,最近仅得到13MB点云文件。经检查发现生成的mask文件夹中的_geo.png都是大部分区域黑色图片,从而最后得到的 final.png的大部分区域都是无效的。geometric consistency阈值分别是默认的0.01和1。不知道您这边是否有一样的问题?

    opened by lt-xiang 13
  • Why is there a big gap between the reproducing results and the paper results?

    Why is there a big gap between the reproducing results and the paper results?

    I have tried the pre-trained model you offered on DTU dataset. But the results I got are mean_acc=0.299, mean_comp=0.385, overall=0.342, and the results you presented in the paper are mean_acc=0.321, mean_comp=0.289, overall=0.305.

    I do not know where the problem is.

    opened by cainsmile 14
Releases(T&T_ply)
Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022