PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

Overview

MuseMorphose

This repository contains the official implementation of the following paper:

  • Shih-Lun Wu, Yi-Hsuan Yang
    MuseMorphose: Full-Song and Fine-Grained Music Style Transfer with One Transformer VAE
    ArXiv preprint, May 2021 [arXiv] [demo website]

Prerequisites

  • Python >= 3.6
  • Install dependencies
pip3 install -r requirements.txt
  • GPU with >6GB RAM (optional, but recommended)

Preprocessing

# download REMI-pop-1.7K dataset
wget -O remi_dataset.tar.gz https://zenodo.org/record/4782721/files/remi_dataset.tar.gz?download=1
tar xzvf remi_dataset.tar.gz
rm remi_dataset.tar.gz

# compute attributes classes
python3 attributes.py

Training

python3 train.py [config file]
  • e.g.
python3 train.py config/default.yaml
  • Or, you may download the pretrained weights straight away
wget -O musemorphose_pretrained_weights.pt https://zenodo.org/record/5119525/files/musemorphose_pretrained_weights.pt?download=1

Generation

python3 generate.py [config file] [ckpt path] [output dir] [num pieces] [num samples per piece]
  • e.g.
python3 generate.py config/default.yaml musemorphose_pretrained_weights.pt generations/ 10 5

This script will randomly draw the specified # of pieces from the test set.
For each sample of a piece, the rhythmic intensity and polyphonicity will be shifted entirely and randomly by [-3, 3] classes for the model to generate style-transferred music.
You may modify random_shift_attr_cls() in generate.py or write your own function to set the attributes.

Customized Generation (To Be Added)

We welcome the community's suggestions and contributions for an interface on which users may

  • upload their own MIDIs, and
  • set their desired bar-level attributes easily

Citation BibTex

If you find this work helpful and use our code in your research, please kindly cite our paper:

@article{musemorphose21arxiv,
    title={{MuseMorphose}: Full-Song and Fine-Grained Music Style Transfer with One {Transformer VAE}},
    author={Shih-Lun Wu and Yi-Hsuan Yang},
    year={2021},
    journal={arXiv preprint arXiv:2105.04090},
}
Owner
Yating Music, Taiwan AI Labs
A research team working on Music AI technology at the Taiwan AI Labs, Taiwan
Yating Music, Taiwan AI Labs
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022