Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Related tags

Deep LearningSTFC3
Overview

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue Cao, Zheng Zhang, Philip H. S. Torr, Han Hu (* equal contribution)

arxiv

Introduction

This is the the repository for Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning, published in SRVU - ICCV 2021 workshop.

If you find our work useful in your research, please consider citing us.

@article{tang2021breaking,
  title={Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning},
  author={Tang, Yansong and Jiang, Zhenyu and Xie, Zhenda and Cao, Yue and Zhang, Zheng and Torr, Philip HS and Hu, Han},
  journal={arXiv preprint arXiv:2105.05838},
  year={2021}
}

Installation

  1. Create a conda environment with Python 3.8.

  2. Install Pytorch 1.5 with CUDA 10.2.

  3. Install packages list in requirements.txt.

  4. Install NVIDIA Apex following the instruction here.

Data

We use the Kinetics400 dataset. You can find directions for downloading it here.

To facilitates data preparation, we save the precomputed metadata given by torchvision.datasets.Kinetics400, and load it before training.

Training and Testing

Training

Run:

python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS train.py -opt $OPTION_FILE_NAME -extra amp_opt_level=O1

An example option file is here

Testing

You could download our pretrained model here

We follow the CRW to perform downstream task evaluation

An example command is:

bash davis_test_script.sh $TRAINED_MODEL_PATH reproduce 0 -1

Related Repositories

  1. CRW
Owner
Zhenyu Jiang
Second-year Ph.D. at UTCS
Zhenyu Jiang
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst ๐Ÿš€ A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wangโ€ , Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
HyperaPy: An automatic hyperparameter optimization framework โšก๐Ÿš€

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023