[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

Overview

F8Net
Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral)

OpenReview | arXiv | PDF | Model Zoo | BibTex

PyTorch implementation of neural network quantization with fixed-point 8-bit only multiplication.

F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization
Qing Jin1,2, Jian Ren1, Richard Zhuang1, Sumant Hanumante1, Zhengang Li2, Zhiyu Chen3, Yanzhi Wang2, Kaiyuan Yang3, Sergey Tulyakov1
1Snap Inc., 2Northeastern University, 3Rice University
ICLR 2022 Oral.

Overview Neural network quantization implements efficient inference via reducing the weight and input precisions. Previous methods for quantization can be categorized as simulated quantization, integer-only quantization, and fixed-point quantization, with the former two involving high-precision multiplications with 32-bit floating-point or integer scaling. In contrast, fixed-point models can avoid such high-demanding requirements but demonstrates inferior performance to the other two methods. In this work, we study the problem of how to train such models. Specifically, we conduct statistical analysis on values for quantization and propose to determine the fixed-point format from data during training with some semi-empirical formula. Our method demonstrates that high-precision multiplication is not necessary for the quantized model to achieve comparable performance as their full-precision counterparts.

Getting Started

Requirements
  1. Please check the requirements and download packages.

  2. Prepare ImageNet-1k data following pytorch example, and create a softlink to the ImageNet data path to data under current the code directory (ln -s /path/to/imagenet data).

Model Training
Conventional training
  • We train the model with the file distributed_run.sh and the command
    bash distributed_run.sh /path/to/yml_file batch_size
    
  • We set batch_size=2048 for conventional training of floating-/fixed-point ResNet18 and MobileNet V1/V2.
  • Before training, please update the dataset_dir and log_dir arguments in the yaml files for training the floating-/fixed-point models.
  • To train the floating-point model, please use the yaml file ***_floating_train.yml in the conventional subfolder under the corresponding folder of the model.
  • To train the fixed-point model, please first train the floating-point model as the initialization. Please use the yaml file ***_fix_quant_train.yml in the conventional subfolder under the corresponding folder of the model. Please make sure the argument fp_pretrained_file directs to the correct path for the corresponding floating-point checkpoint. We also provide our pretrained floating-point models in the Model Zoo below.
Tiny finetuning
  • We finetune the model with the file run.sh and the command

    bash run.sh /path/to/yml_file batch_size
    
  • We set batch_size=128 and use one GPU for tiny-finetuning of fixed-point ResNet18/50.

  • Before fine-tuning, please update the dataset_dir and log_dir arguments in the yaml files for finetuning the fixed-point models.

  • To finetune the fixed-point model, please use the yaml file ***_fix_quant_***_pretrained_train.yml in the tiny_finetuning subfolder under the corresponding folder of the model. For model pretrained with PytorchCV (Baseline of ResNet18 and Baseline#1 of ResNet50), the floating-point checkpoint will be downloaded automatically during code running. For the model pretrained by Nvidia (Baseline#2 of ResNet50), please download the checkpoint first and make sure the argument nvidia_pretrained_file directs to the correct path of this checkpoint.

Model Testing
  • We test the model with the file run.sh and the command

    bash run.sh /path/to/yml_file batch_size
    
  • We set batch_size=128 and use one GPU for model testing.

  • Before testing, please update the dataset_dir and log_dir arguments in the yaml files. Please update the argument integize_file_path and int_op_only_file_path arguments in the yaml files ***_fix_quant_test***_integize.yml and ***_fix_quant_test***_int_op_only.yml, respectively. Please also update other arguments like nvidia_pretrained_file if necessary (even if they are not used during testing).

  • We use the yaml file ***_floating_test.yml for testing the floating-point model; ***_fix_quant***_test.yml for testing the fixed-point model with the same setting as during training/tiny-finetuning; ***_fix_quant***_test_int_model.yml for testing the fixed-point model on GPU with all quantized weights, bias and inputs implemented with integers (but with float dtype as GPU does not support integer operations) and use the original modules during training (e.g. with batch normalization layers); ***_fix_quant***_test_integize.yml for testing the fixed-point model on GPU with all quantized weights, bias and inputs implemented with integers (but with float dtype as GPU does not support integer operations) and a new equivalent model with only convolution, pooling and fully-connected layers; ***_fix_quant***_test_int_op_only.yml for testing the fixed-point model on CPU with all quantized weights, bias and inputs implemented with integers (with int dtype) and a new equivalent model with only convolution, pooling and fully-connected layers. Note that the accuracy from the four testing files can differ a little due to numerical error.

Model Export
  • We export fixed-point model with integer weights, bias and inputs to run on GPU and CPU during model testing with ***_fix_quant_test_integize.yml and ***_fix_quant_test_int_op_only.yml files, respectively.

  • The exported onnx files are saved to the path given by the arguments integize_file_path and int_op_only_file_path.

F8Net Model Zoo

All checkpoints and onnx files are available at here.

Conventional

Model Type Top-1 Acc.a Checkpoint
ResNet18 FP
8-bit
70.3
71.0
Res18_32
Res18_8
MobileNet-V1 FP
8-bit
72.4
72.8
MBV1_32
MBV1_8
MobileNet-V2b FP
8-bit
72.7
72.6
MBV2b_32
MBV2b_8

Tiny Finetuning

Model Type Top-1 Acc.a Checkpoint
ResNet18 FP
8-bit
73.1
72.3
Res18_32p
Res18_8p
ResNet50b (BL#1) FP
8-bit
77.6
77.6
Res50b_32p
Res50b_8p
ResNet50b (BL#2) FP
8-bit
78.5
78.1
Res50b_32n
Res50b_8n

a The accuracies are obtained from the inference step during training. Test accuracy for the final exported model might have some small accuracy difference due to numerical error.

Technical Details

The main techniques for neural network quantization with 8-bit fixed-point multiplication includes the following:

  • Quantized methods/modules including determining fixed-point formats from statistics or by grid-search, fusing convolution and batch normalization layers, and reformulating PACT with fixed-point quantization are implemented in models/fix_quant_ops.
  • Clipping-level sharing and private fractional length for residual blocks are implemented in the ResNet (models/fix_resnet) and MobileNet V2 (models/fix_mobilenet_v2).

Acknowledgement

This repo is based on AdaBits.

Citation

If our code or models help your work, please cite our paper:

@inproceedings{
  jin2022fnet,
  title={F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization},
  author={Qing Jin and Jian Ren and Richard Zhuang and Sumant Hanumante and Zhengang Li and Zhiyu Chen and Yanzhi Wang and Kaiyuan Yang and Sergey Tulyakov},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=_CfpJazzXT2}
}
Owner
Snap Research
Snap Research
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022