The official homepage of the (outdated) COCO-Stuff 10K dataset.

Overview

COCO-Stuff 10K dataset v1.1 (outdated)

Holger Caesar, Jasper Uijlings, Vittorio Ferrari

Overview

COCO-Stuff example annotations

Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augments the popular COCO [2] dataset with pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning.

Overview

Highlights

  • 10,000 complex images from COCO [2]
  • Dense pixel-level annotations
  • 91 thing and 91 stuff classes
  • Instance-level annotations for things from COCO [2]
  • Complex spatial context between stuff and things
  • 5 captions per image from COCO [2]

Updates

  • 11 Jul 2017: Added working Deeplab models for Resnet and VGG
  • 06 Apr 2017: Dataset version 1.1: Modified label indices
  • 31 Mar 2017: Published annotations in JSON format
  • 09 Mar 2017: Added label hierarchy scripts
  • 08 Mar 2017: Corrections to table 2 in arXiv paper [1]
  • 10 Feb 2017: Added script to extract SLICO superpixels in annotation tool
  • 12 Dec 2016: Dataset version 1.0 and arXiv paper [1] released

Results

The current release of COCO-Stuff-10K publishes both the training and test annotations and users report their performance individually. We invite users to report their results to us to complement this table. In the near future we will extend COCO-Stuff to all images in COCO and organize an official challenge where the test annotations will only be known to the organizers.

For the updated table please click here.

Method Source Class-average accuracy Global accuracy Mean IOU FW IOU
FCN-16s [3] [1] 34.0% 52.0% 22.7% -
Deeplab VGG-16 (no CRF) [4] [1] 38.1% 57.8% 26.9% -
FCN-8s [3] [6] 38.5% 60.4% 27.2% -
DAG-RNN + CRF [6] [6] 42.8% 63.0% 31.2% -
OHE + DC + FCN+ [5] [5] 45.8% 66.6% 34.3% 51.2%
Deeplab ResNet (no CRF) [4] - 45.5% 65.1% 34.4% 50.4%
W2V + DC + FCN+ [5] [5] 45.1% 66.1% 34.7% 51.0%

Dataset

Filename Description Size
cocostuff-10k-v1.1.zip COCO-Stuff dataset v. 1.1, images and annotations 2.0 GB
cocostuff-10k-v1.1.json COCO-Stuff dataset v. 1.1, annotations in JSON format (optional) 62.3 MB
cocostuff-labels.txt A list of the 1+91+91 classes in COCO-Stuff 2.3 KB
cocostuff-readme.txt This document 6.5 KB
Older files
cocostuff-10k-v1.0.zip COCO-Stuff dataset version 1.0, including images and annotations 2.6 GB

Usage

To use the COCO-Stuff dataset, please follow these steps:

  1. Download or clone this repository using git: git clone https://github.com/nightrome/cocostuff10k.git
  2. Open the dataset folder in your shell: cd cocostuff10k
  3. If you have Matlab, run the following commands:
  • Add the code folder to your Matlab path: startup();
  • Run the demo script in Matlab demo_cocoStuff();
  • The script displays an image, its thing, stuff and thing+stuff annotations, as well as the image captions.
  1. Alternatively run the following Linux commands or manually download and unpack the dataset:
  • wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip
  • unzip downloads/cocostuff-10k-v1.1.zip -d dataset/

MAT Format

The COCO-Stuff annotations are stored in separate .mat files per image. These files follow the same format as used by Tighe et al.. Each file contains the following fields:

  • S: The pixel-wise label map of size [height x width].
  • names: The names of the thing and stuff classes in COCO-Stuff. For more details see Label Names & Indices.
  • captions: Image captions from [2] that are annotated by 5 distinct humans on average.
  • regionMapStuff: A map of the same size as S that contains the indices for the approx. 1000 regions (superpixels) used to annotate the image.
  • regionLabelsStuff: A list of the stuff labels for each superpixel. The indices in regionMapStuff correspond to the entries in regionLabelsStuff.

JSON Format

Alternatively, we also provide stuff and thing annotations in the COCO-style JSON format. The thing annotations are copied from COCO. We encode every stuff class present in an image as a single annotation using the RLE encoding format of COCO. To get the annotations:

  • Either download them: wget --directory-prefix=dataset/annotations-json http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.json
  • Or extract them from the .mat file annotations using this Python script.

Label Names & Indices

To be compatible with COCO, version 1.1 of COCO-Stuff has 91 thing classes (1-91), 91 stuff classes (92-182) and 1 class "unlabeled" (0). Note that 11 of the thing classes from COCO 2015 do not have any segmentation annotations. The classes desk, door and mirror could be either stuff or things and therefore occur in both COCO and COCO-Stuff. To avoid confusion we add the suffix "-stuff" to those classes in COCO-Stuff. The full list of classes can be found here.

The older version 1.0 of COCO-Stuff had 80 thing classes (2-81), 91 stuff classes (82-172) and 1 class "unlabeled" (1).

Label Hierarchy

The hierarchy of labels is stored in CocoStuffClasses. To visualize it, run CocoStuffClasses.showClassHierarchyStuffThings() (also available for just stuff and just thing classes) in Matlab. The output should look similar to the following figure: COCO-Stuff label hierarchy

Semantic Segmentation Models

To encourage further research of stuff and things we provide the trained semantic segmentation model (see Sect. 4.4 in [1]).

DeepLab VGG-16

Use the following steps to download and setup the DeepLab [4] semantic segmentation model trained on COCO-Stuff. It requires deeplab-public-ver2, which is built on Caffe:

  1. Install Cuda. I recommend version 7.0. For version 8.0 you will need to apply the fix described here in step 3.
  2. Download deeplab-public-ver2: git submodule update --init models/deeplab/deeplab-public-ver2
  3. Compile and configure deeplab-public-ver2 following the author's instructions. Depending on your system setup you might have to install additional packages, but a minimum setup could look like this:
  • cd models/deeplab/deeplab-public-ver2
  • cp Makefile.config.example Makefile.config
  • Optionally add CuDNN support or modify library paths in the Makefile.
  • make all -j8
  • cd ../..
  1. Configure the COCO-Stuff dataset:
  • Create folders: mkdir models/deeplab/deeplab-public-ver2/cocostuff && mkdir models/deeplab/deeplab-public-ver2/cocostuff/data
  • Create a symbolic link to the images: cd models/deeplab/cocostuff/data && ln -s ../../../../dataset/images images && cd ../../../..
  • Convert the annotations by running the Matlab script: startup(); convertAnnotationsDeeplab();
  1. Download the base VGG-16 model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_vgg16 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_vgg16_init.caffemodel
  1. Run cd models/deeplab && ./run_cocostuff_vgg16.sh to train and test the network on COCO-Stuff.

DeepLab ResNet 101

The default Deeplab model performs center crops of size 513*513 pixels of an image, if any side is larger than that. Since we want to segment the whole image at test time, we choose to resize the images to 513x513, perform the semantic segmentation and then rescale it elsewhere. Note that without the final step, the performance might differ slightly.

  1. Follow steps 1-4 of the DeepLab VGG-16 section above.
  2. Download the base ResNet model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_resnet101 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_resnet101_init.caffemodel
  1. Rescale the images and annotations:
  • cd models/deeplab
  • python rescaleImages.py
  • python rescaleAnnotations.py
  1. Run ./run_cocostuff_resnet101.sh to train and test the network on COCO-Stuff.

Annotation Tool

In [1] we present a simple and efficient stuff annotation tool which was used to annotate the COCO-Stuff dataset. It uses a paintbrush tool to annotate SLICO superpixels (precomputed using the code of Achanta et al.) with stuff labels. These annotations are overlaid with the existing pixel-level thing annotations from COCO. We provide a basic version of our annotation tool:

  • Prepare the required data:
    • Specify a username in annotator/data/input/user.txt.
    • Create a list of images in annotator/data/input/imageLists/<user>.list.
    • Extract the thing annotations for all images in Matlab: extractThings().
    • Extract the superpixels for all images in Matlab: extractSLICOSuperpixels().
    • To enable or disable superpixels, thing annotations and polygon drawing, take a look at the flags at the top of CocoStuffAnnotator.m.
  • Run the annotation tool in Matlab: CocoStuffAnnotator();
    • The tool writes the .mat label files to annotator/data/output/annotations.
    • To create a .png preview of the annotations, run annotator/code/exportImages.m in Matlab. The previews will be saved to annotator/data/output/preview.

Misc

References

Licensing

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:

Contact

If you have any questions regarding this dataset, please contact us at holger-at-it-caesar.com.

Owner
Holger Caesar
Author of the COCO-Stuff and nuScenes datasets.
Holger Caesar
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022