DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Related tags

Deep Learningdiffq
Overview

Differentiable Model Compression via Pseudo Quantization Noise

linter badge tests badge cov badge

DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Go read our paper for more details.

Requirements

DiffQ requires Python 3.7, and a reasonably recent version of PyTorch (1.7.1 ideally). To install DiffQ, you can run from the root of the repository:

pip install .

You can also install directly from PyPI with pip install diffq.

Usage

import torch
from torch.nn import functional as F
from diffq import DiffQuantizer

my_model = MyModel()
my_optim = ...  # The optimizer must be created before the quantizer
quantizer = DiffQuantizer(my_model)
quantizer.setup_optimizer(my_optim)

# Or, if you want to use a specific optimizer for DiffQ
quantizer.opt = torch.optim.Adam([{"params": []}])
quantizer.setup_optimizer(quantizer.opt)

# Distributed data parallel must be created after DiffQuantizer!
dmodel = torch.distributed.DistributedDataParallel(...)

# Then go on training as usual, just don't forget to call my_model.train() and my_model.eval().
penalty = 1e-3
for batch in loader:
    ...
    my_optim.zero_grad()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.zero_grad()

    # The `penalty` parameter here will control the tradeoff between model size and model accuracy.
    loss = F.mse_loss(x, y) + penalty * quantizer.model_size()
    my_optim.step()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.step()

# To get the true "naive" model size call
quantizer.true_model_size()

# To get the gzipped model size without actually dumping to disk
quantizer.compressed_model_size()

# When you want to dump your final model:
torch.save(quantizer.get_quantized_state(), "some_file.th")
# DiffQ will not optimally code integers. In order to actually get most
# of the gain in terms of size, you should call call `gzip some_file.th`.

# You can later load back the model with
quantizer.restore_quantized_state(torch.load("some_file.th"))

Documentation

See the API documentation.

Examples

We provide three examples in the examples/ folder. One is for CIFAR-10/100, using standard architecture such as Wide-ResNet, ResNet or MobileNet. The second is based on the DeiT visual transformer. The third is a language modeling task on Wikitext-103, using Fairseq

The DeiT and Fairseq examples are provided as a patch on the original codebase at a specific commit. You can initialize the git submodule and apply the patches by running

make examples

For more details on each example, go checkout their specific READMEs:

Installation for development

This will install the dependencies and a diffq in developer mode (changes to the files will directly reflect), along with the dependencies to run unit tests.

pip install -e '.[dev]'

Updating the patch based examples

In order to update the patches, first run make examples to properly initialize the sub repos. Then perform all the changes you want, commit them and run make patches. This will update the patches for each repo. Once this is done, and you checked that all the changes you did are properly included in the new patch files, you can run make reset (this will remove all your changes you did from the submodules, so do check the patch files before calling this) before calling git add -u .; git commit -m "my changes" and pushing.

Test

You can run the unit tests with

make tests

Citation

If you use this code or results in your paper, please cite our work as:

@article{defossez2021differentiable,
  title={Differentiable Model Compression via Pseudo Quantization Noise},
  author={D{\'e}fossez, Alexandre and Adi, Yossi and Synnaeve, Gabriel},
  journal={arXiv preprint arXiv:2104.09987},
  year={2021}
}

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file, except for the following parts that is under the MIT license. The files examples/cifar/src/mobilenet.py and examples/cifar/src/src/resnet.py are taken from kuangliu/pytorch-cifar, released as MIT. The file examples/cifar/src/wide_resnet.py is taken from meliketoy/wide-resnet, released as MIT. See each file headers for the detailed license.

Owner
Facebook Research
Facebook Research
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022