Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

Overview

nli2paraphrases

Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and paraphrasing. The idea presented in the paper is to re-use NLI datasets for paraphrasing, by finding paraphrases through bidirectional entailment.

Setup

# Make sure to run this from the root of the project (top-level directory)
$ pip3 install -r requirements.txt
$ python3 setup.py install

Project Organization

├── README.md          
├── experiments        <- Experiment scripts, through which training and extraction is done
├── models             <- Intended for storing fine-tuned models and configs
├── requirements.txt   
├── setup.py           
├── src                <- Core source code for this project
│   ├── __init__.py    
│   ├── data           <- data loading scripts
│   ├── models         <- general scripts for training/using a NLI model
│   └── visualization  <- visualization scripts for obtaining a nicer view of extracted paraphrases

Getting started

As an example, let us extract paraphrases from SNLI.

The training and extraction process largely follows the same track for other datasets (with some new or removed flags, run scripts with --help flag to see the specifics).

In the example, we first fine-tune a roberta-base NLI model on SNLI sequences (s1, s2).
Then, we use the fine-tuned model to predict the reverse relation for entailment examples, and select only those examples for which entailment holds in both directions. The extracted paraphrases are stored into extract-argmax.

This example assumes that you have access to a GPU. If not, you can force the scripts to use CPU by setting --use_cpu, although the whole process will be much slower.

# Assuming the current position is in the root directory of the project
$ cd experiments/SNLI_NLI

# Training takes ~1hr30mins on Colab GPU (K80)
$ python3 train_model.py \
--experiment_dir="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--pretrained_name_or_path="roberta-base" \
--model_type="roberta" \
--num_epochs=10 \
--max_seq_len=42 \
--batch_size=256 \
--learning_rate=2e-5 \
--early_stopping_rounds=5 \
--validate_every_n_examples=5000

# Extraction takes ~15mins on Colab GPU (K80)
$ python3 extract_paraphrases.py \
--experiment_dir="extract-argmax" \
--pretrained_name_or_path="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--model_type="roberta" \
--max_seq_len=42 \
--batch_size=1024 \
--l2r_strategy="ground_truth" \
--r2l_strategy="argmax"

Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Matej Klemen
MSc student at Faculty of Computer and Information Science (University of Ljubljana). Mainly into data science.
Matej Klemen
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022