Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Overview

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

In this work, we propose an algorithm DP-SCAFFOLD(-warm), which is a new version of the so-called SCAFFOLD algorithm ( warm version : wise initialisation of parameters), to tackle heterogeneity issues under mathematical privacy constraints known as Differential Privacy (DP) in a federated learning framework. Using fine results of DP theory, we have succeeded in establishing both privacy and utility guarantees, which show the superiority of DP-SCAFFOLD over the naive algorithm DP-FedAvg. We here provide numerical experiments that confirm our analysis and prove the significance of gains of DP-SCAFFOLD especially when the number of local updates or the level of heterogeneity between users grows.

Two datasets are studied:

  • a real-world dataset called Femnist (an extended version of EMNIST dataset for federated learning), which you see the Accuracy growing with the number of communication rounds (50 local updates first and then 100 local updates)

image_femnist image_femnist

  • synthetic data called Logistic for logistic regression models, which you see the train loss decreasing with the number of communication rounds (50 local updates first and then 100 local updates),

image_logistic image_logistic

Significant results are available for both of these datasets for logistic regression models.

Structure of the code

  • main.py: four global options are available.
    • generate: to generate data, introduce heterogeneity, split data between users for federated learning and preprocess data
    • optimum (after generate): to run a phase training with unsplitted data and save the "best" empirical model in a centralized setting to properly compare rates of convergence
    • simulation (after generate and optimum): to run several simulations of federated learning and save the results (accuracy, loss...)
    • plot (after simulation): to plot visuals

./data

Contains generators of synthetic (Logistic) and real-world (Femnist) data ( file data_generator.py), designed for a federated learning framework under some similarity parameter. Each folder contains a file data where the generated data (train and test) is stored.

./flearn

  • differential_privacy : contains code to apply Gaussian mechanism (designed to add differential privacy to mini-batch stochastic gradients)
  • optimizers : contains the optimization framework for each algorithm (adaptation of stochastic gradient descent)
  • servers : contains the super class Server (in server_base.py) which is adapted to FedAvg and SCAFFOLD (algorithm from the point of view of the server)
  • trainmodel : contains the learning model structures
  • users : contains the super class User (in user_base.py) which is adapted to FedAvg and SCAFFOLD ( algorithm from the point of view of any user)

./models

Stores the latest models over the training phase of federated learning.

./results

Stores several metrics of convergence for each simulation, each similarity/privacy setting and each algorithm.

Metrics (evaluated at each round of communication):

  • test accuracy over all users,
  • train loss over all users,
  • highest norm of parameter difference (server/user) over all selected users,
  • train gradient dissimilarity over all users.

Software requirements:

  • To download the dependencies: pip install -r requirements.txt

References

Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022