Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Overview

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

Pouya Samangouei*, Maya Kabkab*, Rama Chellappa

[*: authors contributed equally]

This repository contains the implementation of our ICLR-18 paper: Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models

If you find this code or the paper useful, please consider citing:

@inproceedings{defensegan,
  title={Defense-GAN: Protecting classifiers against adversarial attacks using generative models},
  author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},
  booktitle={International Conference on Learning Representations},
  year={2018}
}

alt text alt text

Contents

  1. Installation
  2. Usage

Installation

  1. Clone this repository:
git clone --recursive https://github.com/kabkabm/defensegan
cd defensegan
git submodule update --init --recursive
  1. Install requirements:
pip install -r requirements.txt

Note: if you don't have a GPU install the cpu version of TensorFlow 1.7.

  1. Download the dataset and prepare data directory:
python download_dataset.py [mnist|f-mnist|celeba]
  1. Create or link output and debug directories:
mkdir output
mkdir debug

or

ln -s <path-to-output> output
ln -s <path-to-debug> debug

Usage

Train a GAN model

python train.py --cfg <path> --is_train <extra-args>
  • --cfg This can be set to either a .yml configuration file like the ones in experiments/cfgs, or an output directory path.
  • <extra-args> can be any parameter that is defined in the config file.

The training will create a directory in the output directory per experiment with the same name as to save the model checkpoints. If <extra-args> are different from the ones that are defined in <config>, the output directory name will reflect the difference.

A config file is saved into each experiment directory so that they can be loaded if <path> is the address to that directory.

Example

After running

python train.py --cfg experiments/cfgs/gans/mnist.yml --is_train

output/gans/mnist will be created.

[optional] Save reconstructions and datasets into cache:

python train.py --cfg experiments/cfgs/<config> --save_recs
python train.py --cfg experiments/cfgs/<config> --save_ds

Example

After running the training code for mnist, the reconstructions and the dataset can be saved with:

python train.py --cfg output/gans/mnist --save_recs
python train.py --cfg output/gans/mnist --save_ds

As training goes on, sample outputs of the generator are written to debug/gans/<model_config>.

Black-box attacks

To perform black-box experiments run blackbox.py [Table 1 and 2 of the paper]:

python blackbox.py --cfg <path> \
    --results_dir <results_path> \
    --bb_model {A, B, C, D, E} \
    --sub_model {A, B, C, D, E} \
    --fgsm_eps <epsilon> \
    --defense_type {none|defense_gan|adv_tr}
    [--train_on_recs or --online_training]
    <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.

  • --results_dir The path where the final results are saved in text files.

  • --bb_model The black-box model architectures that are used in Table 1 and Table 2.

  • --sub_model The substitute model architectures that are used in Table 1 and Table 2.

  • --defense_type specifies the type of defense to protect the classifier.

  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.

  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in blackbox.py. The most important ones are:

    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_train The number of images to train the black-box model on. For debugging purposes set this to a small value.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
    • --debug This will save qualitative attack and reconstruction results in debug directory and will not run the adversarial attack part of the code.
  • Refer to blackbox.py for more flag descriptions.

Example

  • Row 1 of Table 1 Defense-GAN-Orig:
python blackbox.py --cfg output/gans/mnist \
    --results_dir defensegan \
    --bb_model A \
    --sub_model B \
    --fgsm_eps 0.3 \
    --defense_type defense_gan
  • If you set --nb_epochs 1 --nb_epochs_s 1 --data_aug 1 you will get a quick glance of how the script works.

White-box attacks

To test Defense-GAN for white-box attacks run whitebox.py [Tables 4, 5, 12 of the paper]:

python whitebox.py --cfg <path> \
       --results_dir <results-dir> \
       --attack_type {fgsm, rand_fgsm, cw} \
       --defense_type {none|defense_gan|adv_tr} \
       --model {A, B, C, D} \
       [--train_on_recs or --online_training]
       <optional-arguments>
  • --cfg is the path to the config file for training the iWGAN. This can also be the path to the output directory of the model.
  • --results_dir The path where the final results are saved in text files.
  • --defense_type specifies the type of defense to protect the classifier.
  • --train_on_recs or --online_training These parameters are optional. If they are set, the classifier will be trained on the reconstructions of Defense-GAN (e.g. in column Defense-GAN-Rec of Table 1 and 2). Otherwise, the results are for Defense-GAN-Orig. Note --online_training will take a while if --rec_iters, or L in the paper, is set to a large value.
  • <optional-arguments> A list of --<arg_name> <arg_val> that are the same as the hyperparemeters that are defined in config files (all lower case), and also a list of flags in whitebox.py. The most important ones are:
    • --rec_iters The number of GD reconstruction iterations for Defense-GAN, or L in the paper.
    • --rec_lr The learning rate of the reconstruction step.
    • --rec_rr The number of random restarts for the reconstruction step, or R in the paper.
    • --num_test The number of images to test on. For debugging purposes set this to a small value.
  • Refer to whitebox.py for more flag descriptions.

Example

First row of Table 4:

python whitebox.py --cfg <path> \
       --results_dir whitebox \
       --attack_type fgsm \
       --defense_type defense_gan \
       --model A
  • If you want to quickly see how the scripts work, add the following flags:
--nb_epochs 1 --num_tests 400
Owner
Maya Kabkab
Maya Kabkab
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022