This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Overview

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021)

Introduction

This repository is the offical Pytorch implementation of ContextPose, Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021). Below is the example pipeline of using ContextPose for 3D pose estimation. overall pipeline

Quick start

Environment

This project is developed using >= python 3.5 on Ubuntu 16.04. NVIDIA GPUs are needed.

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${ContextPose_ROOT}.
  2. Install dependences.
    1. Install pytorch >= v1.4.0 following official instruction.
    2. Install other packages. This project doesn't have any special or difficult-to-install dependencies. All installation can be down with:
    pip install -r requirements.txt
  3. Download data following the next section. In summary, your directory tree should be like this
${ContextPose_ROOT}
├── data
├── experiments
├── mvn
├── logs 
├── README.md
├── process_h36m.sh
├── requirements.txt
├── train.py
`── train.sh

Data

Note: We provide the training and evaluation code on Human3.6M dataset. We do NOT provide the source data. We do NOT own the data or have permission to redistribute the data. Please download according to the official instructions.

Human3.6M

  1. Install CDF C Library by following (https://stackoverflow.com/questions/37232008/how-read-common-data-format-cdf-in-python/58167429#58167429), which is neccessary for processing Human3.6M data.
  2. Download and preprocess the dataset by following the instructions in mvn/datasets/human36m_preprocessing/README.md.
  3. To train ContextPose model, you need rough estimations of the pelvis' 3D positions both for train and val splits. In the paper we use the precalculated 3D skeletons estimated by the Algebraic model proposed in learnable-triangulation (which is an opensource repo and we adopt their Volumetric model to be our baseline.) All pretrained weights and precalculated 3D skeletons can be downloaded at once from here and placed to ./data/pretrained. Here, we fine-tuned the pretrained weight on the Human3.6M dataset for another 20 epochs, please download the weight from here and place to ./data/pretrained/human36m.
  4. We provide the limb length mean and standard on the Human3.6M training set, please download from here and place to ./data/human36m/extra.
  5. Finally, your data directory should be like this (for more detailed directory tree, please refer to README.md)
${ContextPose_ROOT}
|-- data
    |-- human36m
    |   |-- extra
    |   |   | -- una-dinosauria-data
    |   |   | -- ...
    |   |   | -- mean_and_std_limb_length.h5
    |   `-- ...
    `-- pretrained
        |-- human36m
            |-- human36m_alg_10-04-2019
            |-- human36m_vol_softmax_10-08-2019
            `-- backbone_weights.pth

Train

Every experiment is defined by .config files. Configs with experiments from the paper can be found in the ./experiments directory. You can use the train.sh script or specifically:

Single-GPU

To train a Volumetric model with softmax aggregation using 1 GPU, run:

python train.py \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

The training will start with the config file specified by --config, and logs (including tensorboard files) will be stored in --logdir.

Multi-GPU

Multi-GPU training is implemented with PyTorch's DistributedDataParallel. It can be used both for single-machine and multi-machine (cluster) training. To run the processes use the PyTorch launch utility.

To train our model using 4 GPUs on single machine, run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 --sync_bn\
  train.py  \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Evaluation

After training, you can evaluate the model. Inside the same config file, add path to the learned weights (they are dumped to logs dir during training):

model:
    init_weights: true
    checkpoint: {PATH_TO_WEIGHTS}

Single-GPU

Run:

python train.py \
  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Multi-GPU

Using 4 GPUs on single machine, Run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 \
  train.py  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Argument --eval_dataset can be val or train. Results can be seen in logs directory or in the tensorboard.

Results & Model Zoo

  • We evaluate ContextPose on two available large benchmarks: Human3.6M and MPI-INF-3DHP.
  • To get the results reported in our paper, you can download the weights and place to ./logs.
Dataset to be evaluated Weights Results
Human3.6M link 43.4mm (MPJPE)
MPI-INF-3DHP link 81.5 (PCK), 43.6 (AUC)
  • For H36M, the main metric is MPJPE (Mean Per Joint Position Error) which is L2 distance averaged over all joints. To get the result, run as stated above.
  • For 3DHP, Percentage of Correctly estimated Keypoints (PCK) as well as Area Under the Curve (AUC) are reported. Note that we directly apply our model trained on H36M dataset to 3DHP dataset without re-training to evaluate the generalization performance. To prevent from over-fitting to the H36M-style appearance, we only change the training strategy that we fix the backbone to train 20 epoch before we train the whole network end-to-end. If you want to eval on MPI-INF-3DHP, you can save the results and use the official evaluation code in Matlab.

Human3.6M

MPI-INF-3DHP

Citation

If you use our code or models in your research, please cite with:

@article{ma2021context,
  title={Context Modeling in 3D Human Pose Estimation: A Unified Perspective},
  author={Ma, Xiaoxuan and Su, Jiajun and Wang, Chunyu and Ci, Hai and Wang, Yizhou},
  journal={arXiv preprint arXiv:2103.15507},
  year={2021}
} 

Acknowledgement

This repo is built on https://github.com/karfly/learnable-triangulation-pytorch. Part of the data are provided by https://github.com/una-dinosauria/3d-pose-baseline.

Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022