Retinal vessel segmentation based on GT-UNet

Related tags

Deep LearningGT-U-Net
Overview

Retinal vessel segmentation based on GT-UNet

Introduction

This project is a retinal blood vessel segmentation code based on UNet-like Group Transformer Network (GT-UNet), including data preprocessing, model training and testing, visualization, etc.

Requirements

The main package and version of the python environment are as follows

# Name                    Version         
python                    3.7.9                    
pytorch                   1.7.0         
torchvision               0.8.0         
cudatoolkit               10.2.89       
cudnn                     7.6.5           
matplotlib                3.3.2              
numpy                     1.19.2        
opencv                    3.4.2         
pandas                    1.1.3        
pillow                    8.0.1         
scikit-learn              0.23.2          
scipy                     1.5.2           
tensorboardX              2.1        
tqdm                      4.54.1             

Usage

The project structure and intention are as follows :

VesselSeg-Pytorch			# Source code		
    ├── config.py		 	# Configuration information
    ├── lib			            # Function library
    │   ├── common.py
    │   ├── dataset.py		        # Dataset class to load training data
    │   ├── datasetV2.py		        # Dataset class to load training data with lower memory
    │   ├── extract_patches.py		# Extract training and test samples
    │   ├── help_functions.py		# 
    │   ├── __init__.py
    │   ├── logger.py 		        # To create log
    │   ├── losses
    │   ├── metrics.py		        # Evaluation metrics
    │   └── pre_processing.py		# Data preprocessing
    ├── models		        # All models are created in this folder
    │   ├── __init__.py
    │   ├── nn
    │   └── GT-UNet.py
    ├── prepare_dataset	        # Prepare the dataset (organize the image path of the dataset)
    │   ├── chasedb1.py
    │   ├── data_path_list		  # image path of dataset
    │   ├── drive.py
    │   └── stare.py
    ├── tools			     # some tools
    │   ├── ablation_plot.py
    │   ├── ablation_plot_with_detail.py
    │   ├── merge_k-flod_plot.py
    │   └── visualization
    ├── function.py			        # Creating dataloader, training and validation functions 
    ├── test.py			            # Test file
    └── train.py			          # Train file

Training model

Please confirm the configuration information in the config.py. Pay special attention to the train_data_path_list and test_data_path_list. Then, running:

python train.py

You can configure the training information in config, or modify the configuration parameters using the command line. The training results will be saved to the corresponding directory(save name) in the experiments folder.

3) Testing model

The test process also needs to specify parameters in config.py. You can also modify the parameters through the command line, running:

python test.py  

The above command loads the best_model.pth in ./experiments/GT-UNet_vessel_seg and performs a performance test on the testset, and its test results are saved in the same folder.

Owner
Kent0n
Kent0n
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022