[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Overview

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

[Paper] [Project Website] [Output resutls]

Official Pytorch implementation for Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN. Please contact Badour AlBahar ([email protected]) if you have any questions.

Requirements

conda create -n posewithstyle python=3.6
conda activate posewithstyle
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Intall openCV using conda install -c conda-forge opencv or pip install opencv-python. If you would like to use wandb, install it using pip install wandb.

Download pretrained models

You can download the pretrained model here, and the pretrained coordinate completion model here.

Note: we also provide the pretrained model trained on StylePoseGAN [Sarkar et al. 2021] DeepFashion train/test split here. We also provide this split's pretrained coordinate completion model here.

Reposing

Download the UV space - 2D look up map and save it in util folder.

We provide sample data in data directory. The output will be saved in data/output directory.

python inference.py --input_path ./data --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt

To repose your own images you need to put the input image (input_name+'.png'), dense pose (input_name+'_iuv.png'), and silhouette (input_name+'_sil.png'), as well as the target dense pose (target_name+'_iuv.png') in data directory.

python inference.py --input_path ./data --input_name fashionWOMENDressesid0000262902_3back --target_name fashionWOMENDressesid0000262902_1front --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt

Garment transfer

Download the UV space - 2D look up map and the UV space body part segmentation. Save both in util folder. The UV space body part segmentation will provide a generic segmentation of the human body. Alternatively, you can specify your own mask of the region you want to transfer.

We provide sample data in data directory. The output will be saved in data/output directory.

python garment_transfer.py --input_path ./data --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt --part upper_body

To use your own images you need to put the input image (input_name+'.png'), dense pose (input_name+'_iuv.png'), and silhouette (input_name+'_sil.png'), as well as the garment source target image (target_name+'.png'), dense pose (target_name+'_iuv.png'), and silhouette (target_name+'_sil.png') in data directory. You can specify the part to be transferred using --part as upper_body, lower_body, or face. The output as well as the part transferred (shown in red) will be saved in data/output directory.

python garment_transfer.py --input_path ./data --input_name fashionWOMENSkirtsid0000177102_1front --target_name fashionWOMENBlouses_Shirtsid0000635004_1front --CCM_pretrained_model path/to/CCM_epoch50.pt --pretrained_model path/to/posewithstyle.pt --part upper_body

DeepFashion Dataset

To train or test, you must download and process the dataset. Please follow instructions in Dataset and Downloads.

You should have the following downloaded in your DATASET folder:

DATASET/DeepFashion_highres
 - train
 - test
 - tools
   - train.lst
   - test.lst
   - fashion-pairs-train.csv
   - fashion-pairs-test.csv

DATASET/densepose
 - train
 - test

DATASET/silhouette
 - train
 - test

DATASET/partial_coordinates
 - train
 - test

DATASET/complete_coordinates
 - train
 - test

DATASET/resources
 - train_face_T.pickle
 - sphere20a_20171020.pth

Training

Step 1: First, train the reposing model by focusing on generating the foreground. We set the batch size to 1 and train for 50 epochs. This training process takes around 7 days on 8 NVIDIA 2080 Ti GPUs.

python -m torch.distributed.launch --nproc_per_node=8 --master_port XXXX train.py --batch 1 /path/to/DATASET --name exp_name_step1 --size 512 --faceloss --epoch 50

The checkpoints will be saved in checkpoint/exp_name.

Step 2: Then, finetune the model by training on the entire image (only masking the padded boundary). We set the batch size to 8 and train for 10 epochs. This training process takes less than 2 days on 2 A100 GPUs.

python -m torch.distributed.launch --nproc_per_node=2 --master_port XXXX train.py --batch 8 /path/to/DATASET --name exp_name_step2 --size 512 --faceloss --epoch 10 --ckpt /path/to/step1/pretrained/model --finetune

Testing

To test the reposing model and generate the reposing results:

python test.py /path/to/DATASET --pretrained_model /path/to/step2/pretrained/model --size 512 --save_path /path/to/save/output

Output images will be saved in --save_path.

You can find our reposing output images here.

Evaluation

We follow the same evaluation code as Global-Flow-Local-Attention.

Bibtex

Please consider citing our work if you find it useful for your research:

@article{albahar2021pose,
    title   = {Pose with {S}tyle: {D}etail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN},
  author  = {AlBahar, Badour and Lu, Jingwan and Yang, Jimei and Shu, Zhixin and Shechtman, Eli and Huang, Jia-Bin},
    journal = {ACM Transactions on Graphics},
  year    = {2021}
}

Acknowledgments

This code is heavily borrowed from Rosinality: StyleGAN 2 in PyTorch.

Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022